纳米气泡在微细粒矿物浮选中的应用研究进展

刘安, 韩峰, 李志红, 刘爱荣, 樊民强. 纳米气泡在微细粒矿物浮选中的应用研究进展[J]. 矿产保护与利用, 2018, (3): 81-86. doi: 10.13779/j.cnki.issn1001-0076.2018.03.015
引用本文: 刘安, 韩峰, 李志红, 刘爱荣, 樊民强. 纳米气泡在微细粒矿物浮选中的应用研究进展[J]. 矿产保护与利用, 2018, (3): 81-86. doi: 10.13779/j.cnki.issn1001-0076.2018.03.015
LIU An, HAN Feng, LI Zhihong, LIU Airong, FAN Minqiang. Research Progress of Nano-bubble in Micro-fine Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2018, (3): 81-86. doi: 10.13779/j.cnki.issn1001-0076.2018.03.015
Citation: LIU An, HAN Feng, LI Zhihong, LIU Airong, FAN Minqiang. Research Progress of Nano-bubble in Micro-fine Mineral Flotation[J]. Conservation and Utilization of Mineral Resources, 2018, (3): 81-86. doi: 10.13779/j.cnki.issn1001-0076.2018.03.015

纳米气泡在微细粒矿物浮选中的应用研究进展

  • 基金项目:
    国家自然科学基金资助项目(5170041308)
详细信息
    作者简介: 刘安(1987-), 女, 讲师, 主要研究方向为矿物浮选, E-mail: 956347894@qq.com
    通讯作者: 樊民强(1964-), 男, 教授, 主要研究方向为矿物加工工艺理论与技术, E-mail: 87443289@qq.com
  • 中图分类号: TD923+.7

Research Progress of Nano-bubble in Micro-fine Mineral Flotation

More Information
  • 阐述了微细粒矿物的分选现状,结合微细粒矿物浮选过程的理论研究进展,指出了提高微细粒矿物分选效率的关键因素是强化矿物颗粒与气泡之间的相互作用过程。以纳米气泡所产生的"纳米气泡桥毛细作用力"为切入点,讨论了纳米气泡强化微细粒矿物浮选的机制,同时介绍了纳米气泡在微细粒矿物浮选中的应用,并展望了纳米气泡在微细粒矿物浮选过程中的应用价值与发展前景。

  • 加载中
  • 图 1  改善微细粒矿物浮选的方法

    Figure 1. 

  • [1]

    尚旭, 张文彬, 刘殿文, 等.微细粒矿物的分选技术及设备探讨[J].矿产保护与利用, 2007(1):31-35. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=402b47cc-c2bf-4735-b0e8-bf5030998dcd

    [2]

    邱冠周, 胡岳华, 王淀佐.颗粒间相互作用与细粒浮选[M].湖南:中南工业大学出版社, 1993.

    [3]

    胡岳华.细粒浮选的进展[J].国外金属矿选矿, 1992(12):6-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnysjs201405004

    [4]

    Fuerstenau DW. Fine particle flotation in fine particle processing[C]. New York: Proceedings International Symposium, 1980, 1: 669-705.

    [5]

    卢寿慈, 翁达.界面分选原理及应用[M].北京:冶金工业出版社, 1992.

    [6]

    葛英勇, 侯静涛, 余俊.微细粒矿物浮选技术进展[J].金属矿山, 2010(12):90-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201012023

    [7]

    曹亦俊, 闫小康, 王利军, 等.微细粒浮选的微观湍流强化[J].矿产保护与利用, 2017(2):113-118. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=feeb8e2e-36bb-4fbf-9f49-ef29f6de18c3

    [8]

    Guven O, Celik MS, Drelich JW. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier[J]. Minerals Engineering, 2015, 79:125-132. doi: 10.1016/j.mineng.2015.06.003

    [9]

    Sutherland KL. Physical chemistry of flotation XI kinetics of the flotation process[J]. Journal of Physical and Colloid Chemistry, 1948, 52:394-425. doi: 10.1021/j150458a013

    [10]

    Derjaguin BV, Dukhin SS. Theory of flotation of small and medium-size particles[J]. Bulletin Institution of Mining and Metallurgy, 1961, 651:241-246. http://adsabs.harvard.edu/abs/1993PrSS...43..241D

    [11]

    Anfruns JF, Kitchener JA. Rate of capture of small particles in flotation[J]. Transactions of the Institution of Mining and Metallurgy, Section C:Mineral Processing and Extractive Metallurgy, 1977, 86:9-15. http://www.mendeley.com/research/rates-capture-small-particles-flotation/

    [12]

    Dai Z, Fornasiero D, Ralston J. Particle-bubble collision models-a review[J]. Advances in Colloid and Interface Science, 2000, 85(2-3):231-256. doi: 10.1016/S0001-8686(99)00030-5

    [13]

    Yang J, Duan J, Fornasiero D, et al. Very small bubble formation at the solid-water interface[J]. Journal of Physical Chemistry B, 2003, 107(2):6139-6147. http://cat.inist.fr/?aModele=afficheN&cpsidt=14916751

    [14]

    Ralston J, Dukhin SS. The interaction between particles and bubbles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151(1-2):3-14. http://cat.inist.fr/?aModele=afficheN&cpsidt=10025684

    [15]

    Rulyov NN. Turbulent microflotation:theory and experiment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 192(1-3):73-91. http://linkinghub.elsevier.com/retrieve/pii/S092777570100718X

    [16]

    Nguyen AV, George P, Jameson GJ. Demonstration of a minimum in the recovery of nanoparticles by flotation:theory and experiment[J]. Chemical Engineering Science, 2006, 61(8):2494-2509. doi: 10.1016/j.ces.2005.11.025

    [17]

    Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation[J]. Minerals Engineering, 2010, 23:420-437. doi: 10.1016/j.mineng.2009.12.006

    [18]

    Cilliers JJ, Bradshawt DJ. The flotation of fine pyrite using colloidal gas aphrons[J]. Minerals Engineering, 1996, 9(2):235-241. doi: 10.1016/0892-6875(96)00006-4

    [19]

    Waters KE, Hadler K, Cilliers JJ. The flotation of fine particles using charged microbubbles[J]. Minerals Engineering, 2008, 21:918-923. doi: 10.1016/j.mineng.2008.04.011

    [20]

    SUN Wei, DENG Meijiao, HU Yuehua, et al. Fine particle aggregating and flotation behavior induced by high intensity conditioning of a CO2 saturation slurry[J]. Mining science and technology, 2009(4):483-488. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHKD200904016.htm

    [21]

    Yin W, Yang X, Zhou D, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate[J]. Transactions of Nonferrous Metals Society of China, 2011, 21:652-664. doi: 10.1016/S1003-6326(11)60762-0

    [22]

    Pineres J, Barraza J. Energy barrier of aggregates coal particle-bubble through the extended DLVO theory[J]. International Journal of Mineral Processing, 2011, 100(1-2):14-20. doi: 10.1016/j.minpro.2011.04.007

    [23]

    Christen-son H K, Claesson P M. Cavitation and the interaction between macroscopic hydrophobic surfaces[J]. Science, 1988, 239:390-392. doi: 10.1126/science.239.4838.390

    [24]

    Parker JL, Claesson PM, Attard P. Bubbles, cavities and the long-ranged attraction between hydrophobic surfaces[J]. Journal of Physical Chemistry, 1994, 98(34):8468-8480. doi: 10.1021/j100085a029

    [25]

    Carambassis A, Jonker LC, Attard P, et al. Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble[J]. Physical Review Letters, 1998, 80(24):53-57. http://adsabs.harvard.edu/abs/1998PhRvL..80.5357C

    [26]

    Ducker WA, Xu Z. Measurements of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solutions[J]. Langmuir, 1994, 10(9):3279-3289. doi: 10.1021/la00021a061

    [27]

    Ishida N. Direct measurement of hydrophobic particle-bubble interactions in aqueous solutions by atomic force microscopy:effect of particle hydrophobicity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 300(3):293-299. http://cat.inist.fr/?aModele=afficheN&cpsidt=18776318

    [28]

    Nguyen AV, Nalaskowski J, Miller JD, et al. Attraction between hydrophobic surfaces studied by atomic force microscopy[J]. International Journal of Mineral Processing, 2003, 72(1-4):215-225. doi: 10.1016/S0301-7516(03)00100-5

    [29]

    Nguyen AV, Nalaskowski J, Miller JD. A study of bubble-particle interaction using atomic force microscopy[J]. Minerals Engineering, 2003, 16(11):1173-1181. doi: 10.1016/j.mineng.2003.07.013

    [30]

    Zhou ZA, Xu Z. Effect of gas nuclei on hydrophobic coagulation[J]. Journal of Colloid and Interface Science, 1996, 179(1):311-314. doi: 10.1006/jcis.1996.0218

    [31]

    Xu Z, Choung J, Sun W, et al. Role of hydrodynamic cavitation by high intensity agitation in fine particle aggregation and flotation[C]. Istanbul: ⅩⅩⅤⅡ International Mineral Processing Congress, 2006.

    [32]

    冯其明, 周伟光, 石晴.纳米气泡的形成及其对微细粒矿物浮选的影响[J].中南大学学报(自然科学版), 2017(1):9-15. doi: 10.11817/j.issn.1672-7207.2017.01.002

    [33]

    骆庆群, 杨洁明.基于纳米气泡的煤炭浮选模型研究[J].太原理工大学学报, 2014(2):201-209. http://www.cqvip.com/QK/90007A/201402/48963584.html

    [34]

    陶有俊, 刘谦, Daniel TAO, 等.纳米泡提高细粒煤浮选效果的研究[J].中国矿业大学学报, 2009(6):820-823. http://www.cnki.com.cn/Article/CJFDTOTAL-XMJS201402006.htm

    [35]

    Fan M, Tao D, Honaker R, et al. Nanobubble generation and its application in froth flotation (part Ⅲ):specially designed laboratory scale column flotation of phosphate[J]. Mining Science and Technology, 2010, 20(3):317-338. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHKD201003002.htm

    [36]

    Ahmadi Rahman, Khodadadi Darban Ahmad, Abdollahy Mahmoud, et al. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles[J]. Mining Science and Technology, 2014(4):559-566. http://linkinghub.elsevier.com/retrieve/pii/S2095268614000949

    [37]

    M FAN, D TAO, H Rick, et al. Nanobubble generation and its applications in froth flotation(part Ⅳ):mechanical cells and specially designed column flotation of coal[J].Mining Science and Technology, 2010(5):641-671.

    [38]

    Calgaroto S, Azevedo A, Rubio J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137:64-70. doi: 10.1016/j.minpro.2015.02.010

    [39]

    Sobhy A, Tao D. High-efficiency nanobubble coal flotation[J]. International Journal of Coal Preparation and Utilization, 2013, 33(5):242-256. doi: 10.1080/19392699.2013.810623

  • 加载中

(1)

计量
  • 文章访问数:  1924
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2018-04-02
刊出日期:  2018-06-25

目录