-
摘要:
对水浸过程中影响BaS溶出的可能反应进行热力学分析,考察了浸取温度、浸取时间、液固比对水溶性钡存在形式的影响。结果表明:增加液固比、浸取温度可有效提高BaS的浸取率;浸取过程中部分溶出的钡会生成水不溶性钡,水不溶性钡总生成率随着浸取温度、时间的增加而增加,随着液固比的增加而降低水。当浸取温度为55 ℃、浸取时间为60 min、液固比为60时,BaS的浸取率为90.13 %,BaS的残留率为4.27%,BaSiO3的生成率为3.14%,BaCO3的生成率为1.24%,在该工艺条件下BaS有较高的浸取率、较低的残留率及较低的水不溶性钡生成率。
Abstract:Thermodynamic analysis of reactions affecting the dissolution of BaS during water leaching, and the effects of leaching temperature, leaching time, and liquid-solid ratio on the presence of water-soluble barium were investigated. The results show that increasing the liquid-solid ratio and leaching temperature can effectively increase the leaching rate of BaS. Part of the dissolved barium will generate water-insoluble barium, and the total formation rate of water-insoluble barium increases with the increase of the leach temperature and time, and decreases with the increase of the liquid-solid ratio.When the leaching temperature is 55 ℃, the leaching time is 60 min, and the liquid-solid ratio is 60, the leaching rate of BaS was 90.13%, the residual rate of BaS was 4.27%, formation rate of BaSiO3 was 3.14%, formation rate of BaCO3 was 3.14%, BaS has higher leaching rate, lower residual rate and lower water-insoluble helium formation rate under the process conditions.
-
Key words:
- barium sulfide /
- water leaching /
- thermodynamics /
- leaching rate /
- barite
-
表 1 重晶石熟料的成分分析结果 /%
Table 1. Chemical composition analysis of barite black ash
成分 BaS BaSO4 BaSiO3 BaCO3 SiO2 含量 71.84 6.43 2.12 3.85 12.67 表 2 影响BaS溶出的系列反应
Table 2. Series of reactions affecting the dissolution of BaS
序号 化学反应 R1 BaS= Ba2++S2- R2 S2-+H2O=HS-+OH- R3 Ba(OH)2=Ba2++2OH- R4 Ba2++2OH-+SiO2=BaSiO3+H2O R5 Ba2++2OH-+CO2=BaCO3+H2O -
[1] Jamshidi E, Ale Ebrahim H. A new clean process for barium carbonate preparation by barite reduction with methane[J]. Chemical engineering and processing, 2008, 47:1567-1577. doi: 10.1016/j.cep.2007.07.006
[2] 陶建礼.硫化钡黑灰的浸取沉降工艺及设备的改造[J].贵州化工, 1997(1):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700163519
[3] 冯冬梅, 王君, 戴佳佳, 等.以硫化钡黑灰为原料制备碳酸钡工艺研究[J].山东化工, 2017, 46(2):23-25, 27. doi: 10.3969/j.issn.1008-021X.2017.02.010
[4] 石荣铭, 范勇, 彭汝芳.以重晶石为原料制取高纯碳酸钡的工艺流程和工艺条件探讨[J].西南科技大学学报, 2004, 19(1):75-78. doi: 10.3969/j.issn.1671-8755.2004.01.019
[5] 付靖春.高纯球状碳酸钡晶体的制备研究[J].无机盐工业, 2016, 48(10):50-53. http://d.old.wanfangdata.com.cn/Periodical/wjygy201610014
[6] 许全起.沉积型和热液型重晶石的锻烧和浸取[J].无机盐工业, 2000, 32(3):23-25. doi: 10.3969/j.issn.1006-4990.2000.03.009
[7] 李超阳, 徐浩洋, 胡光胜, 等.低温碱溶法提取粉煤灰中二氧化硅和氧化铝的实验研究[J].山东化工, 2017, 46(4):36-38. doi: 10.3969/j.issn.1008-021X.2017.04.015
[8] 邬国栋, 叶亚平, 钱维兰, 等.低温碱溶粉煤灰中硅和铝的溶出规律研究[J].环境科学研究, 2006, 19(1):53-57. doi: 10.3321/j.issn:1001-6929.2006.01.014
[9] 石荣铭.碳化法生产工业碳酸钡[J].河北化工, 2005(2):24-25. http://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ200502009.htm
[10] 张媛媛, 陈晓香, 张虹.碳还原重晶石制备硫化钡的热力学[J].广东化工, 2015, 42(1):46-47. doi: 10.3969/j.issn.1007-1865.2015.01.022