-
摘要:
采用动态水热合成法制备了纳米硬硅钙石纤维,研究了石灰活性和石英粒度对硬硅钙石纤维合成过程的影响规律,同时,采用场发射扫描电镜(FESEM)、X射线衍射(XRD)等测试手段对硬硅钙石纤维微观形貌和物相进行分析和表征。结果表明:碳酸钙经1 000 ℃煅烧4 h后获得的石灰活性较高,与23 μm粒径晶质石英粉反应并添加氧氯化锆作为添加剂,可制备纳米级硬硅钙石纤维,纤维直径约为82 nm,体积密度仅为70.4 kg/m3。研究结果可为超轻硬硅钙石纤维的工业化生产提供理论指导。
Abstract:Nano xonotlite fibers were synthesized by hydrothermal method in this study. The effects of lime activity and silica powder particle size on the hydrothermal synthesis of xonotlite were studied, and the phase and microstructure of xonotlite fibers were characterized by x-ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM). The results show that the activity of lime obtained by calcination for 4 hours at 1 000 ℃ is higher than other temperatures. The lime combined with 23 μm silica powder and ZrOCl2 as additive can synthesize nano-scale xonotlite fibers with diameter 82 nm and bulk density 70.4 kg/m3. The results can provide theoretical guidance for the industrial production of ultra-light xonotlite.
-
Key words:
- xonotlite /
- hydrothermal synthesis /
- lime /
- silica /
- fibers
-
[1] 郑骥, 倪文, 肖晋宜.硬硅钙石动态水热法合成及其微观形貌控制[J].材料科学与工程学报, 2008(2):161-164. http://d.old.wanfangdata.com.cn/Periodical/clkxygc200802001
[2] 张宇飞.改性石灰岩水热合成硬硅钙石型保温材料[J].非金属矿, 2017, 40(5):53-55. doi: 10.3969/j.issn.1000-8098.2017.05.016
[3] 郝明, 普连仙, 刘畅.硅酸钙保温材料发展研究进展[J].建材发展导向, 2014, 12(16):29-31. http://d.old.wanfangdata.com.cn/Periodical/jxfzdx-x201408012
[4] 郑骥, 倪文, 肖晋宜, 等.粉石英和白炭黑作为硅质原料合成硬硅钙石的研究[J].新型建筑材料, 2006(6):56-58. doi: 10.3969/j.issn.1001-702X.2006.06.019
[5] 张金青.我国矿山尾矿生产微晶材料产业化现状与前景[J].矿产保护与利用, 2017(4):94-97. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201704019
[6] F Liu, S Chen, Q Lin, et al. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis[C]. Irish: Published under licence by IOP publishing Ltd, 2017.
https://www.researchgate.net/publication/322906007_Comparative_dynamics_analysis_on_xonotlite_spherical_particles_synthesized_via_hydrothermal_synthesis [7] Wei Guan, Fangying Ji, Dexin Fang, et al. Porosity formation and enhanced solubility of calcium silicate hydrate in hydrothermal synthesis[J]. Ceramics international, 2014, 40(1):1667-1674. doi: 10.1016/j.ceramint.2013.07.058
[8] 徐国强, 倪文, 梁涛, 等.硬硅钙石-SiO2气凝胶复合纳米孔超级绝热材料在钢结构防火中的应用探讨[J].露天采矿技术, 2007(2):70-74. doi: 10.3969/j.issn.1671-9816.2007.02.025
[9] 唐振华, 马淑花, 王月娇, 等.硬硅钙石晶须的水热合成[J].过程工程学报, 2013, 13(6):1047-1051. http://d.old.wanfangdata.com.cn/Periodical/hgyj201306025
[10] 王华, 宋存义, 曹贞源, 等.硅酸钙保温材料的原料选择依据[J].墙材革新与建筑节能, 1999(4):37-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901035587
[11] Fei Liu, Xiaodan Wang, Jianxin Cao. Effect of ultrasonic process on carbide slag activity and synthesized xonotlite[J]. Phys procedia, 2012, 25:56-62. doi: 10.1016/j.phpro.2012.03.049
[12] 乐红志, 王昕, 王成玉, 等.动态水热法合成超轻硬硅钙石的研究[J].现代技术陶瓷, 2015, 36(2):5-9. http://d.old.wanfangdata.com.cn/Periodical/xdjstc201502002
[13] 陈淑祥, 倪文, 江翰, 等.超轻硬硅钙石型硅酸钙绝热材料制备技术国内外研究现状[J].新型建筑材料, 2004(1):53-55. doi: 10.3969/j.issn.1001-702X.2004.01.023
[14] 马亚梦, 谭秀民, 张秀峰, 等.我国重质碳酸钙产业现状及发展建议[J].矿产保护与利用, 2015(3):71-75. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=682759cc-deac-4602-b3f0-af1603294459