Heavy Metal Pollution Degree and Its Risk Assessment of Farmland Soil in the Downstream of a Uranium Tailings Pond
-
摘要:
为了解某铀尾矿下游农田土壤重金属污染程度及其潜在生态风险,选取地积累指数法及潜在生态危害指数法来对尾矿库周边下游农田土壤重金属污染状况及其对生态的潜在危害进行综合评价。数据显示:研究区土壤中Cd和U均超出国家背景值,均值分别为国家背景值的6.89倍和3.16倍。同时,Cd和U也高于当地背景值,均值为当地背景值的4.96倍和2.5倍。铀尾矿下游农田9个样品中Cd和U地累积指数值分别介于1.90~2.82之间和0.81~1.46之间。对于Cd,9个样品中有1个样品为轻度污染,8个样品为中度污染。对于U元素,9个样品中有4个样品为轻微污染,5个样品为轻度污染。铀尾矿下游农田综合潜在生态风险程度多为中。总体来看,该农田潜在生态风险较高,主要是Cd和U所带来的潜在生态风险。
Abstract:In order to understand the heavy metal pollution degree and potential ecological risk of farmland soil in the downstream of a uranium tailings, the geological accumulation index method and the potential ecological hazard index method are used to comprehensively evaluate the heavy metal pollution status and its potential hazards to the ecology. The data showed that the contents of Cd and U in the soil of the farmland exceed the national background value, and the average values are 6.89 times and 3.16 times of the national background value, respectively. Meanwhile, the contents of Cd and U are also higher than the local background value, and the average value are 4.96 times and 2.53 times of the local background value. The geological accumulation index values of Cd and U in 9 samples from the downstream farmland of uranium tailings are concentrated between 1.90~2.82 and 0.81~1.46, respectively. For Cd element, one of the nine samples is slightly contaminated and eight samples are mildly contaminated. For U element, 4 out of 9 samples are slightly contaminated and 5 samples are mildly contaminated. The potential ecological risk of downstream farmland around the tailings pond is mostly medium. Overall, the potential ecological risk of the farmland is high, mainly due to the potential ecological risks brought by Cd and U.
-
Key words:
- tailings pond /
- farmland /
- heavy metals /
- risk assessment /
- Uranium
-
表 1 土壤中重金属元素含量
Table 1. Content of heavy metal elements in soil
样品号 重金属含量/(mg·kg-1) Cr Co Ni Cu Zn Cd Pb U 1 37.35 6.49 14.33 12.10 48.49 0.44 22.60 7.15 2 28.47 5.44 11.65 9.87 47.29 0.84 23.69 11.25 3 66.40 11.34 28.88 51.48 85.99 0.53 26.38 8.82 4 46.78 6.92 16.05 20.90 53.22 0.51 25.26 8.05 5 35.98 6.74 15.39 17.05 49.76 0.52 24.97 8.69 6 27.52 4.92 10.62 11.68 40.99 0.53 21.98 8.76 7 33.44 6.60 15.80 12.80 48.94 0.51 23.81 8.34 8 39.48 6.82 15.75 15.87 46.66 0.51 23.11 8.12 9 34.83 6.31 14.31 14.48 43.86 0.51 21.25 8.15 国家背景值/(mg·kg-1) 57.30 11.60 24.90 20.70 68.00 0.08 23.50 2.72 最大值/(mg·kg-1) 66.40 11.34 28.88 51.48 85.99 0.84 26.38 11.25 最小值/(mg·kg-1) 27.52 4.92 10.62 9.87 40.99 0.44 21.25 7.15 算术均值/(mg·kg-1) 38.92 6.84 15.87 18.47 51.69 0.54 23.67 8.59 标准差 11.13 1.71 4.94 12.08 12.57 0.11 1.56 1.06 变异系数 0.29 0.25 0.31 0.65 0.24 0.20 0.07 0.12 均值与国家背景值比 0.68 0.59 0.64 0.89 0.76 6.89 1.01 3.16 均值与当地背景值(表 3)比 1.08 0.87 0.86 0.88 1.00 4.96 0.98 2.53 表 2 土壤重金属元素相关性
Table 2. Correlation of heavy metal elements in soil
元素 Cr Co Ni Cu Zn Cd Pb U Cr 1 0.963** 0.957** 0.954** 0.936** -0.287 0.724* -0.218 Co 0.963** 1 0.998** 0.966** 0.968** -0.235 0.711* -0.141 Ni 0.957** 0.998** 1 0.967** 0.967** -0.237 0.711* -0.136 Cu 0.954** 0.966** 0.967** 1 0.973** -0.165 0.709* -0.040 Zn 0.936** 0.968** 0.967** 0.973** 1 -0.066 0.771* 0.035 Cd -0.287 -0.235 -0.237 -0.165 -0.066 1 0.065 0.964** Pb 0.724* 0.711* 0.711* 0.709* 0.771* 0.065 1 0.167 U -0.218 -0.141 -0.136 -0.040 0.035 0.964** 0.167 1 “**”在0.01水平(双侧)上显著相关, “*”在0.05水平(双侧)上显著相关。 表 3 距离矿区30 km以外农田土壤重金属元素含量
Table 3. Heavy metal elements in farmland soil 30 kilometers away from mining area
样品号 重金属含量/(mg·kg-1) Cr Co Ni Cu Zn Cd Pb U 10 40.13 6.12 20.12 22.15 50.12 0.12 23.01 3.10 11 22.25 7.24 24.13 24.22 60.12 0.11 25.01 2.90 12 50.14 6.15 22.10 23.12 58.12 0.10 24.13 4.13 13 42.12 5.17 15.26 20.15 40.15 0.11 24.04 3.85 14 25.01 6.12 18.26 20.99 49.76 0.11 25.01 2.98 当地背景值均值 35.93 7.90 18.37 21.01 51.66 0.11 24.24 3.39 表 4 地积累指数评价重金属污染等级
Table 4. Heavy metal pollution levels evaluated by geological accumulation index
等级 Igeo值 重金属污染程度评价 1 Igeo≤0 无污染 2 0<Igeo≤1 轻微污染 3 1<Igeo≤2 轻度污染 4 2<Igeo≤3 中度污染 5 3<Igeo≤4 偏重污染 6 4<Igeo≤5 重度污染 7 Igeo>5 极重污染 表 5 样品重金属元素地积累指数值
Table 5. Geological accumulation indexes of heavy metal elements in samples
样品号 Igeo Cr Co Ni Cu Zn Cd Pb U 1 -1.20 -1.42 -1.38 -1.36 -1.07 1.90 -0.64 0.81 2 -1.59 -1.68 -1.68 -1.65 -1.11 2.82 -0.57 1.46 3 -0.37 -0.62 -0.37 0.73 -0.25 2.16 -0.42 1.11 4 -0.88 -1.33 -1.22 -0.57 -0.94 2.10 -0.48 0.98 5 -1.26 -1.37 -1.28 -0.87 -1.04 2.13 -0.50 1.09 6 -1.64 -1.82 -1.81 -1.41 -1.32 2.15 -0.68 1.10 7 -1.36 -1.40 -1.24 -1.28 -1.06 2.12 -0.57 1.03 8 -1.12 -1.35 -1.25 -0.97 -1.13 2.10 -0.61 0.99 9 -1.30 -1.46 -1.39 -1.10 -1.22 2.12 -0.73 1.00 最大 -0.37 -0.62 -0.37 0.73 -0.25 2.82 -0.42 1.46 最小 -1.64 -1.82 -1.81 -1.65 -1.32 1.90 -0.73 0.81 平均 -1.19 -1.38 -1.29 -0.94 -1.01 2.18 -0.58 1.07 表 6 重金属污染潜在生态危害等级划分
Table 6. Classification of potential ecological hazards of heavy metal pollution
Eri 单因子潜在
生态危害程度RI 综合潜在
生态风险程度Eri<40 低 RI<150 低 40≤Eri≤80 中 150≤RI<300 中 80≤Eri≤160 较重 300≤RI<600 重 160≤Eri≤320 重 600≤RI 严重 320≤Eri 严重 表 7 重金属的金属毒性响应系数[14]
Table 7. Metal toxicity response coefficient of heavy metals
元素 Cr Co Ni Cu Zn Cd Pb U 毒性系数 2 5 5 5 1 30 5 20 表 8 各金属元素单项系数及综合潜在生态危害指数
Table 8. Unidirectional coefficients of various metal elements and comprehensive potential ecological hazard indexes
样品号 Eri RI Cr Co Ni Cu Zn Cd Pb U 1 1.30 2.80 2.88 2.92 0.71 168.46 4.81 52.55 236.44 2 0.99 2.34 2.34 2.38 0.70 318.08 5.04 82.75 414.62 3 2.32 4.89 5.80 12.43 1.27 201.14 5.61 64.82 298.28 4 1.63 2.98 3.22 5.05 0.78 192.47 5.38 59.16 270.67 5 1.26 2.91 3.09 4.12 0.73 196.29 5.31 63.92 277.63 6 0.96 2.12 2.13 2.82 0.60 200.23 4.68 64.43 277.97 7 1.17 2.84 3.17 3.09 0.72 195.22 5.07 61.35 272.63 8 1.38 2.94 3.16 3.83 0.69 193.06 4.92 59.73 269.71 9 1.22 2.72 2.87 3.50 0.65 195.15 4.52 59.94 270.56 均值 1.36 2.95 3.19 4.46 0.76 206.68 5.04 63.18 287.61 -
[1] 张晶, 胡宝群, 冯继光.某铀矿山尾矿坝周边水土的重金属迁移规律研究[J].能源研究与管理, 2011(1):27-29. doi: 10.3969/j.issn.1005-7676.2011.01.008
[2] 马盼军.某铀尾矿库周边土壤中核素U与重金属元素空间分布与污染评价研究[D].绵阳: 西南科技大学, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-10619-1017172873.htm [3] 刘雨芳, 许中坚, 刘文海, 等.铀尾矿库中重金属元素的生态迁移风险研究[J].水土保持学报, 2009, 23(2):153-156, 197. doi: 10.3321/j.issn:1009-2242.2009.02.032
[4] 黄德娟, 朱业安, 刘庆成, 等.某铀矿山环境土壤重金属污染评价[J].金属矿山, 2013(1):146-150. doi: 10.3969/j.issn.1001-1250.2013.01.041
[5] 王文华, 赵晨, 赵俊霞, 等.包头某稀土尾矿库周边土壤重金属污染特征与生态风险评价[J].金属矿山, 2017(7):168-172. doi: 10.3969/j.issn.1001-1250.2017.07.035
[6] JAR Martín, J J Ramos-Miras, R Boluda, et al. Spatial relations of heavy metals in arable and greenhouse soils of a mediterranean environment region (spain)[J]. Geoderma, 2013, 200(6):180-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e0f9e4fcf62f19562b18d36599629cd
[7] Eisa Solgi, Abbas Esmaili-Sari, Alireza Riyahi-Bakhtiari. Spatial distribution of mercury in the surface soils of the Urban areas, Arak, Iran[J]. Bulletin of environmental contamination and toxicology 2014, 93(6):710-715. doi: 10.1007/s00128-014-1408-1
[8] 张金远.铀矿区重金属污染现状与重金属富集植物筛选[D].南昌: 江西农业大学, 2016.
http://cdmd.cnki.com.cn/Article/CDMD-10410-1016280389.htm [9] 王莎, 马俊杰, 赵丹, 等.陕北地区土壤重金属污染特征及生态风险评价[J].农业资源与环境学报, 2013, 30(5):44-47. doi: 10.3969/j.issn.1005-4944.2013.05.010
[10] 何东明, 王晓飞, 陈丽君, 等.基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J].农业资源与环境学报, 2014, 31(2):126-131. http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201402005
[11] 徐玉霞, 彭囿凯, 汪庆华, 等.应用地积累指数法和生态危害指数法对关中西部某铅锌冶炼区周边土壤重金属污染评价[J].四川环境, 2013, 32(4):79-82. doi: 10.3969/j.issn.1001-3644.2013.04.017
[12] 邓红卫, 贺威, 周科平.复垦尾矿库重金属分布及生态风险评价[J].中国有色金属学报, 2015, 25(10):2929-2935. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201510033
[13] 王斐, 黄益宗, 王小玲, 等.江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J].环境化学, 2015, 34(2):225-233. http://d.old.wanfangdata.com.cn/Periodical/hjhx2015020005
[14] 徐争启, 倪师军, 庹先国, 等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术, 2008(2):112-115. doi: 10.3969/j.issn.1003-6504.2008.02.030
[15] 张学礼, 徐乐昌, 张辉.某铀尾矿库周围农田土壤重金属污染潜在生态风险评价[J].中国环境监测, 2016, 32(6):76-83. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201606012
[16] 邵学新, 黄标, 孙维侠, 等.长江三角洲典型地区工业企业的分布对土壤重金属污染的影响[J].土壤学报, 2006, 43(3):397-404. doi: 10.3321/j.issn:0564-3929.2006.03.007
[17] 谢运河, 纪雄辉, 刘昭兵, 等.稻田施用磷肥的土壤镉污染风险初步评价[J].作物研究, 2014, 28(8):871-875. http://d.old.wanfangdata.com.cn/Periodical/zuowuyj2014z2001
[18] 曾希柏, 徐建明, 黄巧云, 等.中国农田重金属问题的若干思考[J].土壤学报, 2013, 50(1):186-194. http://d.old.wanfangdata.com.cn/Periodical/trxb201301023
[19] TESSIER A, CAMPBELL PGC, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal chem, 1979, 51(7):844-851. doi: 10.1021/ac50043a017
[20] 夏增禄.中国土壤环境容量[M].北京:地震出版社, 1992:143-147.
[21] 朱莉, 王津, 刘娟, 等.铀尾矿中铀、钍及部分金属的模拟淋浸实验初探[J].环境化学, 2013, 32(4):678-685. http://d.old.wanfangdata.com.cn/Periodical/hjhx201304021
[22] Brown S.L., Chaney R.L., Angle J.S., et al. Zinc and cadmium uptake by hyperaccumulat or thlaspi caerulescens and metal tolerant silene vulgaris grown on sludge-amended soils[J]. Environmental science and technology, 1995, 29:1581-1585. doi: 10.1021/es00006a022
[23] Lombi E., Zhao F.J., Dunham S.J., et al. Cadmium accumulation in populations of Thlaspi caerulescens and thlaspi goesingense[J]. New phytologist, 2000, 145(1):11-20. doi: 10.1046/j.1469-8137.2000.00560.x
[24] Reeves R., S chwartz C., Morel J.L., et al. Distribution and metal-accumulating behaviour of Thlaspi caeru lescens and associated metallophytes in France[J]. Journal of phytoremediat, 2001, 3:145-172. doi: 10.1080/15226510108500054
[25] Chang Peichun, Kim Kyoungwoong, Satoshi Yoshida, et al. Uranium accumulation of crop plants enhanced by citric acid[J]. Environ geoche health, 2005, 27(5-6):529-538. doi: 10.1007/s10653-005-8013-5
[26] Dushenkov S, Vasudev D, Kapulnik Y, et al. Removal of uranium from water using terrestrial plants[J]. Environ sci technol, 1997, 31(12):3468-3474. doi: 10.1021/es970220l