-
摘要:
为了研究不同浓度的调整剂(碳酸钠、氯化钙和氯化镁)对菱镁矿和白云石单矿物浮选回收率及浮选速率的影响,在矿浆pH值为12、油酸钠浓度为0.25 mmol/L的浮选体系下,针对-74+38 μm粒级的菱镁矿和白云石,进行了分批刮泡浮选试验,并总结出二者最佳浮选分离流程。结果表明,氯化镁(2.0 mmol/L)为调整剂时菱镁矿与白云石的浮游特性差异较显著,通过两次粗选,粗选1时间为1.0 min,粗选2时间为4.0 min的浮选流程实现二者浮选分离。对氯化镁(2.0 mmol/L)为调整剂时单矿物浮选过程模拟分析可知,分速浮选模型可较好地模拟菱镁矿和白云石的浮选过程。
Abstract:In order to study the effects of different concentrations of modifiers (sodium carbonate, calcium chloride and magnesium chloride) on flotation recovery and flotation rate of magnesite and dolomite single minerals the batch bleb flotation test was summarized. For -74+38 μm particles of magnesite and dolomite, set the pulp pH value to 12, the concentration of sodium oleate to 0.25 mmol/L during the flotation test, and the optimum separation process flotation is obtained. The results show that the difference of floatation characteristics between magnesite and dolomite is significant when magnesium chloride (2.0 mmol/L) as a regulator. The flotation separation of two groups is realized by two coarse selection, 1 time for coarse selection is 1.0 min, and 2 time for coarse selection is 4.0 min. The flotation process of magnesite and dolomite can be well simulated by the simulation analysis of the single mineral flotation process of magnesium chloride (2.0 mmol/L) as a regulator.
-
Key words:
- magnesite /
- dolomite /
- regulator /
- separation process /
- flotation kinetics
-
表 1 矿物化学多元素分析 /%
Table 1. Chemical multielement analysis of pure mineral
名称 CaO MgO SiO2 TFe Al2O3 样品纯度 菱镁矿 1.24 45.80 0.27 - - 96.18 白云石 30.34 21.36 1.50 0.078 0.25 99.03 表 2 矿物浮选速率常数
Table 2. Flotation rate constants of minerals
调整剂 矿物 Time/min 0.1 0.2 0.3 0.4 1.0 1.5 1.5 平均值 标准差 序号 浮选速率常数K/min-1 K SD 碳酸钠 菱镁矿 1 5.81 0.93 0.69 0.82 0.60 0.62 0.55 3.02 2.39 白云石 2 8.00 1.14 1.16 0.28 0.16 0.08 0.05 5.53 4.79 氯化钙 菱镁矿 1 1.43 0.36 0.41 0.22 0.14 0.14 0.17 0.48 0.43 白云石 2 4.81 1.16 0.52 0.24 0.14 0.08 0.06 2.79 2.40 氯化镁 菱镁矿 1 1.55 0.65 0.45 0.32 0.25 0.17 0.15 0.55 0.46 白云石 2 0.38 0.20 0.10 0.05 0.06 0.04 0.05 0.10 0.11 表 3 矿物浮选模型的建立
Table 3. Establishment of single mineral flotation model
模型代码 M1 M2 M3 模型名称 经典一级模型 二级矩形分布模型 分速浮选模型 菱镁矿 ε=66.36(1-e-0.99t) $\varepsilon = 87.55\left\{ {1 - \frac{{\left[ {\ln \left( {1 + 2.245} \right)} \right]}}{{2.24t}}} \right\}$ ε=75.49-[16.05e-12.39t+59.44e-0.47t] 白云石 ε=27.74(1-e-0.40t) $\varepsilon = 45.15\left\{ {1 - \frac{{\left[ {\ln \left( {1 + 0.58t} \right)} \right]}}{{0.58t}}} \right\}$ ε=47.78-[3.55e-21.05t+44.23e-0.13t] 表 4 菱镁矿—白云石二元混合矿浮选试验结果
Table 4. Flotation test results of magnesite dolomite binary-mixed ore
产品名称 产率/% 品位/% 回收率/% CaO MgO 菱镁矿 白云石 精矿1 28.05 7.06 41.61 43.20 12.90 精矿2 18.70 11.50 37.85 23.40 14.00 尾矿 54.25 21.26 29.54 33.40 73.10 原矿 100.00 15.17 33.58 100.00 100.00 -
[1] 印万忠, 唐远, 姚金, 等.矿物浮选过程中的交互影响[J].矿产保护与利用, 2018(3):55-60. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=4fbfcb0e-9df4-4b4e-a9ea-cc7ea235c1a6
[2] 刘文刚, 姚广铮, 卢位, 等.十二胺体系中金属离子对菱镁矿和白云石浮选行为的影响[J].矿产保护与利用, 2018(3):67-70, 76. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=059329e5-9b59-4005-b8ff-ac8df0719491
[3] Anastassakis G N. A study on the separation of magnesite fines by magnetic carrier methods[J]. Colloids and surfaces A:physicochemical and engineering aspects, 1999, 149(1/2/3):585-593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5a6b67c9743288915af080f8193dfcb
[4] Botero A E C, Torem M L, Mesquita LMS, et al. Surface chemistry fundamentals of biosorption of rhodococcus opacus and its effect in calcite and magnesite flotation[J]. Minerals engineering, 2008, 21(1):83-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8631f461415186e899c16fdf075cbabe
[5] Asghar Azizi, Ahmad Hassanzadeh, Behnam Fadaei, et al. Investigating the first-order flotation kinetics models for sarcheshmeh copper sulfide ore[J]. International journal of mining science and technology, 2015, 25(5):849-854. doi: 10.1016/j.ijmst.2015.07.022
[6] Cilek E C. Estimation of flotation kinetic parameters by consider-ing interactions of the operating variables[J]. Minerals engineering, 2004, 17(1):81-85. https://www.sciencedirect.com/science/article/abs/pii/S0892687503003510
[7] 陈子鸣, 吴多才.浮选动力学研究之一——矿物浮选速率模型[J].有色金属(冶炼部分), 1978(10):27-34. http://cdmd.cnki.com.cn/Article/CDMD-10407-2010019940.htm
[8] 陈子鸣.浮选动力学研究之二——浮选速率常数分布密度函数的复原[J].有色金属(冶炼部分), 1978(11):29-35. http://www.cnki.com.cn/Article/CJFDTotal-METE197811007.htm
[9] Paula Moraga, Jorge Cano, Rebecca F. Baggaley, et al. Modelling the distribution and transmission intensity of lymphatic filariasis in sub-saharan Africa prior to scaling up interventions:integrated use of geostatistical and mathematical modelling[J]. Parasites & vectors, 2015, 8(1):149-160. http://europepmc.org/abstract/MED/26496983
[10] Tiago Priolli Monteiro, Antonio Carlos Canale. Development of a direct-dynamic model for a passenger vehicle on MATLAB simulink[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2017, 39(2):385-400. doi: 10.1007/s40430-015-0470-x
[11] Yeimy Morales, Gabriel Bosque, Josep Vehí, et al. PFA toolbox:a MATLAB tool for metabolic flux analysis[J]. BMC systems biology, 2016, 10(1):1145-1164. http://pubmedcentralcanada.ca/pmcc/articles/PMC4940746/
[12] Sripriya R, Rao P V T, Choudhury B R, et al. Optimization of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques[J]. International journal of mineral processing, 2003, 64(1/2/3/4):109-127. http://www.sciencedirect.com/science/article/pii/S0301751602000637
[13] 李俊旺, 孙传尧.基于EXCEL和MATLAB求解浮选动力学模型的研究[J].矿冶, 2011, 20(4):1-2. http://d.old.wanfangdata.com.cn/Periodical/ky201104001
[14] Xiaodong Zhang, Huiping Lu, Bo Li, et al. Structure design and optimization of deep cavity rollers of rotary steering spindle system[J]. Journal of failure analysis and prevention, 2016, 16(5):783-789. doi: 10.1007/s11668-016-0149-3
[15] Mehdi Rahimi, Fahimeh Dehghani, Bahram Rezai, et al. Influence of the roughness and shape of quartz particles on their flotation kinetics[J]. International journal of minerals metallurgy and materials.2012, 13(4):783-789. http://link.springer.com/article/10.1007/s12613-012-0552-z
[16] 尹蒂, 李松仁.选矿数学模型[M].长沙:中南工业大学出版社, 1993.
[17] 李俊旺.会泽铅锌硫化矿浮选过程分流分速的动力学研究[D].沈阳: 东北大学, 2012: 86-90.
http://cdmd.cnki.com.cn/Article/CDMD-10145-1015565495.htm