-
摘要:
通过水热振荡法制备了膨润土-壳聚糖复合吸附剂,并对废水中铜(Cu(Ⅱ))进行吸附。通过傅立叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)对复合吸附剂进行了表征。研究结果表明,膨润土-壳聚糖复合吸附剂对铜的吸附性能优于单一膨润土。与膨润土相比,膨润土-壳聚糖复合吸附剂的形状不规则,表面粗糙疏松。在Cu(Ⅱ)初始浓度为50 mg/L、pH值为7、吸附温度为30℃、接触时间为15 min的条件下,膨润土-壳聚糖复合吸附剂对Cu(Ⅱ)的去除效率可达95%以上,吸附量可达到20.12 mg/g。此外,Langmuir和Freundlich模型都能很好地拟合Cu(Ⅱ)在两种吸附剂上的等温吸附。膨润土壳聚糖复合吸附剂对Cu(Ⅱ)的吸附过程符合准二级动力学方程。
Abstract:The removal of copper (Cu (Ⅱ)) from wastewater by composite adsorbent bentonite-chitosan was studied. Characterization of the adsorbent was performed by fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of contact time, chitosan fraction, adsorption temperature and pH were investigated. Results showed that composite adsorbent had a better adsorption capacity than that of bentonite. Compared with bentonite, the shape of bentonite-chitosan was irregular, and its surface was rough and loose. The adsorption amount of Cu (Ⅱ) could reach the maximum of 20.12 mg/g on the conditions of initial concentration of Cu (Ⅱ) 50 mg/L, pH 7.0, adsorption temperature 30℃, and contact time 15 min. Furthermore, both Langmuir and Freundlich isotherm models could well fit the isothermal adsorption of Cu (Ⅱ) on the two adsorbents. The adsorption process of Cu (Ⅱ) on bentonite-chitosan conformed to the pseudo-second-order kinetic equation.
-
Key words:
- adsorption mechanism /
- bentonite /
- kinetics /
- clay minerals /
- copper iron /
- wastewater treatment
-
-
表 1 等温线性拟合特征值
Table 1. Isotherm fitting characteristic values
吸附剂类型 Langmiur方程 Freundlich方程 Qm/(mg·g-1) ka R2 KF 1/n R2 膨润土 12.25 0.001 0.949 1.186 7 0.406 7 0.952 膨润土-壳聚糖复合吸附剂 20.12 0.007 0.986 0.141 0.336 7 0.913 表 2 吸附动力学参数
Table 2. Adsorption kinetics parameters
吸附剂类型 准一级动力学方程 准二级动力学方程 Elovich方程 K1 R2 K2 qe R2 K3 c1 R2 膨润土 0.097 9 0.933 8 0.048 2 5.35 0.997 3 0.878 5 1.633 0.948 膨润土-壳聚糖复合吸附剂 0.032 5 0.710 3 0.113 5 9.96 0.999 5 0.648 3.429 5 0.916 7 -
[1] 刘磊, 吕良, 马瑛, 等.含铜钼精矿超导磁分离试验研究[J].矿产保护与利用, 2017(1):55-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=56a2ba85-56dc-4692-b76f-866e23362471
[2] 魏俊杰, 张妍, 曹柳青, 等.冀中某铜矿废弃地土壤及优势植物重金属特征评价[J].矿产保护与利用, 2017(1):90-97. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1494a637-7133-41f4-9e71-70f693f017a3
[3] Wang X S, Miao H H, He W, et al. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) ions on wheat-residue derived black carbon[J]. Journal of chemical & engineering data, 2011, 56(3):444-449. http://pubs.acs.org/doi/abs/10.1021/je101079w
[4] Hu H, Li X, Huang P, et al. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate[J]. Journal of environmental management, 2017, 203:1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f319c5c3c6b47682921ad4257e2b28f7
[5] 刘琪, 刘泽航.含氰含铜电镀废水处理工程实例研究[J].环境科学与管理, 2017(6):110-112. doi: 10.3969/j.issn.1673-1212.2017.06.025
[6] 税永红, 高晓凤.离子交换法处理含铜废水的研究进展[J].成都纺织高等专科学校学报, 2016(4):220-225. doi: 10.3969/j.issn.1008-5580.2016.04.047
[7] 周利民, 刘峙嵘, 黄群武.用粉煤灰吸附废水中的金属离子[J].化工环保, 2006(6):506-509. doi: 10.3969/j.issn.1006-1878.2006.06.017
[8] 林少华, 周婷婷, 李佳.凹凸棒土颗粒吸附剂制备优化及对铅、铜吸附研究[J].科学技术与工程, 2016(20):301-305. doi: 10.3969/j.issn.1671-1815.2016.20.055
[9] 杨敏, 柯俊锋, 何晓曼, 等.氢氧化钠改性沸石对水中Cu2+的吸附特性研究[J].环境污染与防治, 2017(3):314-318. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwryfz201703017
[10] Tang X, Meng X, Shi L. Desulfurization of model gasoline on modified bentonite[J]. Industrial & engineering chemistry research, 2011, 50(12):7527-7533. http://pubs.acs.org/doi/abs/10.1021/ie200475x
[11] 马友华.膨润土在土壤改良和肥料生产上的研究和应用[J].矿产保护与利用, 1996(1):26-29. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c652200d-24fb-4080-87d9-f0b5462aa1bc
[12] Futalan C M, Kan C, Dalida M L, et al. Comparative and competitive adsorption of copper, lead and nickel using chitosan immobilized on bentonite[J]. Carbohydrate polymers, 2011, 83(2):528-536. doi: 10.1016/j.carbpol.2010.08.013
[13] 朱一民, 王忠安, 苏秀娟, 等.钙基膨润土对水相中铜离子的吸附[J].东北大学学报, 2006(1):99-102. doi: 10.3321/j.issn:1005-3026.2006.01.026
[14] Radheshyam R. Pawar A L B H C. Activated bentonite as a low-cost adsorbent for the removal of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions:batch and column studies[J]. Journal of industrial and engineering chemistry, 2016, 34:213-223. doi: 10.1016/j.jiec.2015.11.014
[15] Liu J, Li P, Chen L, et al. Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation[J]. Surface and coatings technology, 2016, 307:171-176. doi: 10.1016/j.surfcoat.2016.08.052
[16] 陈亮, 陈东辉, 李步祥.壳聚糖吸附处理废水的研究进展[J].四川环境, 2001, 20(3):19-23. doi: 10.3969/j.issn.1001-3644.2001.03.006
[17] Futalan C M, Kan C, Dalida M L, et al. Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite[J]. Carbohydrate polymers, 2011, 83(2):697-704. doi: 10.1016/j.carbpol.2010.08.043
[18] 杨莹琴, 陈慧娟.羧甲基壳聚糖插层膨润土的研制及其对Cu2+的吸附[J].非金属矿, 2009(1):81-83. doi: 10.3969/j.issn.1000-8098.2009.01.027
[19] Sreedharan V, Sivapullaiah P V. Effect of organic modification on adsorption behaviour of bentonite[J]. Indian geotechnical journal, 2012, 42(3):161-168. doi: 10.1007/s40098-012-0014-6
[20] Zhu J, Zhang P, Yuan S, et al. Production of hydroxyl radicals from oxygenation of simulated AMD due to CaCO3 -induced pH increase[J]. Water research, 2017, 111:118-126. doi: 10.1016/j.watres.2016.12.048
[21] Cybelle Morales Futalan W T S L, Maria Lourdes Dalida, Meng Weiwan. Copper, nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in a ternary system[J]. Sustainable environment research, 2012, 22(6):345-355.
[22] Dalida M L P, Mariano A F V, Futalan C M, et al. Adsorptive removal of Cu(Ⅱ) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads[J]. Desalination, 2011, 275(1-3):154-159. doi: 10.1016/j.desal.2011.02.051
-