Application of Microwave Heating Technology in Resource Utilization of Metallurgical Slag
-
摘要:
冶金渣中含有大量的有价金属元素。为提高冶金渣的资源化利用率,实现固废无害化、减量化、资源化处理,进而推动我国冶金工业的增值增效、健康稳定持续发展。对近年来冶金渣的资源化利用研究进展进行了综述,重点介绍微波加热技术在冶金渣资源化中的应用,旨在为合理开发利用不同的冶金渣提供借鉴。
Abstract:Metallurgical slag contains a large amount of valuable metal elements, which should be further enhanced its comprehensive utilization value. By improving the resource utilization rate of metallurgical slag, solid waste can be realized, harmless, reduced and resourced, and then the sustainable development of value-added efficiency of China's metallurgical industry can be promoted. For this, the paper reviewed the research progress of resource utilization of metallurgical slag in recent years. The application of microwave heating technology in the recycling of metallurgical slag was mainly introduced, aiming at providing reference for the rational development and utilization of different metallurgical slag.
-
Key words:
- metallurgical slag /
- solid waste resource /
- microwave heating /
- resources utilization
-
[1] 王绍文, 梁富智, 王纪曾.固体废弃物资源化技术与应用[M].北京:冶金工业出版社, 2003:13-16.
[2] Guerrero L A, Maas G, Hogland W. Solid waste management challenges for cities in developing countries[J]. Tecnología en marcha, 2013, 33(1): 220-232. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-hjkxygc201204013
[3] 于先坤.冶金固废资源化利用现状及发展[J].金属矿山, 2015, 44(2):177-180. http://d.old.wanfangdata.com.cn/Periodical/jsks201502034
[4] 闫启平.我国冶金渣开发利用产业慨况及发展前景[J].再生资源与循环经济, 2014, 7(4):22-27. doi: 10.3969/j.issn.1674-0912.2014.04.008
[5] 赵青林, 周明凯, 魏茂.德国冶金渣及其综合利用情况[J].硅酸盐通报, 2006, 25(6):165-171. doi: 10.3969/j.issn.1001-1625.2006.06.036
[6] Zhang D Q, Tan S K, Gersberg R M. Municipal solid waste management in China: status, problems and challenges[J]. Journal of environmental management, 2010, 91(8): 1623-1633. doi: 10.1016/j.jenvman.2010.03.012
[7] 蔡雪军, 王崇英, 周启胜, 等.冶金渣综合利用与节能环保[J].节能与环保, 2009, 4:36-37. doi: 10.3969/j.issn.1673-6478.2009.01.011
[8] 刘仁生, 何巍, 王维兴.钢铁工业节能减排新技术[M].北京:中国科学技术出版社, 2009:23-26.
[9] Yang X L, Dai H X, Li X. Comprehensive utilization and discussion of iron and steel metallurgical slag[J]. Advanced materials research, 2013, 807-809: 2328-2331. doi: 10.4028/www.scientific.net/AMR.807-809.2328
[10] 任毅.碱钢渣-矿渣基加气混凝土的制备与性能研究[D].重庆: 重庆大学, 2017.
[11] 廖桂如.锰铁高炉渣的处理与利用[J].环境工程, 1994, 1:54-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400193881
[12] 刘爱民.隔膜泵的结构原理以及在氧化铝赤泥排放中的应用研究[D].济南: 山东大学, 2013.
[13] 何焕华, 蔡乔方.中国镍钴冶金[M].北京:中国冶金出版社, 2000:13-15.
[14] He L X. Application of high Ti-bearing blast furnace slag in field of building materials[J].Advanced materials research, 2014, 1052: 392-395. doi: 10.4028/www.scientific.net/AMR.1052.392
[15] 张亚洲, 李宇, 苍大强.铁合金渣综合利用的研究现状及发展趋势[J].冶金能源, 2013, 5:44-47. http://d.old.wanfangdata.com.cn/Periodical/yjny201305012
[16] 刘军.冶金固体废弃物资源化处理与综合利用[J].中国环保产业, 2009, 8:35-37. http://d.old.wanfangdata.com.cn/Periodical/zghbcy200908008
[17] 吕心刚.钢渣的处理方式及利用途径探讨[J].河南冶金, 2013, 3:20-25. http://d.old.wanfangdata.com.cn/Periodical/henyj201303010
[18] 叶平, 陈广言, 刘玉兰, 等.钢渣综合利用途径及处理工艺的选择[J].安徽冶金, 2006, 3:42-46. http://d.old.wanfangdata.com.cn/Periodical/zgsy-xby201306058
[19] 陈进利, 吴勇生.有色冶金废渣综合利用现状及发展趋势[J].中国资源综合利用, 2008, 26(10):22-25. doi: 10.3969/j.issn.1008-9500.2008.10.010
[20] 刘清, 招国栋, 赵由才.有色冶金废渣中有价金属回收的技术及现状[J].有色冶金设计与研究, 2007, 28(2):22-26. doi: 10.3969/j.issn.1004-4345.2007.02.005
[21] Li K Q, Chen J, Chen G, et al. Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore[J]. Bioresource technology, 2019, 286. https://doi.org/10.1016/j.biortech.2019.121381. doi: 10.1016/j.biortech.2019.121381
[22] Chen G, Chen J, Peng J H. Effects of mechanical activation on structural and microwave absorbing characteristics of high titanium slag[J]. Powder technology, 2015, 286: 218-222. doi: 10.1016/j.powtec.2015.08.021
[23] Ye Q X, Zhu H B, Zhang L B, et al.Carbothermal reduction of low-grade pyrolusite by microwave heating[J]. Rsc advances, 2014, 4: 58164-58170. doi: 10.1039/C4RA08010F
[24] West C P, Harrison I. Facile synthesis of bimetallic carbonitrides, VxTix(C, N), by microwave carbothermal reduction-ammonolysis/carburisation (MW-CRAC) methods[J]. Journal of the European Ceramic Society, 2009, 29(11): 2355-2361. doi: 10.1016/j.jeurceramsoc.2009.01.018
[25] Wu J B, Jiang T, Xue X X, et al. Effect of initial composition on (Ca, Mg)α'-sialon/BN powder synthesized from boron-rich slag[J]. Transactions of nonferrous metals society of China, 2012, 22(12):2984-2990. doi: 10.1016/S1003-6326(11)61560-4
[26] 许少霞, 艾立群, 石鑫越.微波碳热还原钢渣脱磷的升温特性[J].四川有色金属, 2012(4):9-12. doi: 10.3969/j.issn.1006-4079.2012.04.001
[27] 李海洋.包钢转炉渣微波碳热还原脱磷研究[D].包头: 内蒙古科技大学, 2015.
[28] Chen J, Li L, Chen G, et al. Rapid thermal decomposition of manganese ore using microwave heating[J].J. alloys & compounds, 2016, 699: 430-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50c0da57f6b71547c3dcf9717e913107
[29] Chen G, Li L., Tao C Y, et al. Effects of microwave heating on microstructures and structure properties of the manganese ore[J]. J. alloys & compounds, 2016, 657: 515-518. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0889a95572c1af6e52984667ac1c73a2
[30] 张宁, 胡佳山.微波煅烧硅酸盐水泥的研究[J].硅酸盐通报, 2000, 19(5):14-18. doi: 10.3969/j.issn.1001-1625.2000.05.003
[31] 李鑫金, 赵景联.微波煅烧活化赤泥处理含铬废水的研究[J].轻金属, 2005, 9:16-19. http://d.old.wanfangdata.com.cn/Periodical/qjs200509004
[32] 范兴祥, 彭金辉, 张世敏, 等.硝酸浸出锌浮渣制取超细活性氧化锌的新工艺研究[J].化工矿物与加工, 2002, 31(9):11-13. doi: 10.3969/j.issn.1008-7524.2002.09.004
[33] Chen H F, Chen G, Wu Y Q, et al. Synthesis of rutile TiO2 from Panzhihua sulfate titanium slag by microwave heating[J]. JOM, 2017, 69: 2660-2665. doi: 10.1007/s11837-017-2545-x
[34] He A X, Chen G, Chen J, et al. A novel method of synthesis and investigation on transformation of synthetic rutile powders from Panzhihua sulphate titanium slag using microwave heating[J]. Powder technology, 2018, 323: 115-119. doi: 10.1016/j.powtec.2017.10.020
[35] 于淑萍, 崔晓雪.活性炭/钢渣吸附-微波氧化法皂化废水处理研究[J].广州化工, 2015, 17:121-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzhg201517043
[36] 宋宁, 钟晓林, 龚斌, 等.钕铁硼二次废渣微波加热制备锰锌铁氧体[J].稀有金属, 2008, 32(4):454-458. doi: 10.3969/j.issn.0258-7076.2008.04.012
[37] 余霞, 李静, 郭栋清, 等.微波氧化焙烧含锗硬锌渣试验研究[J].矿冶, 2017(6):47-50. doi: 10.3969/j.issn.1005-7854.2017.06.010
[38] 张梅, 罗永光.锌浸出渣的微波干燥与常规干燥对比实验研究[J].企业技术开发, 2010, 29(A7):91-92. http://d.old.wanfangdata.com.cn/Periodical/qyjskf201007043
[39] 李健, 张利波, 彭金辉, 等.响应曲面优化微波干燥铅渣的工艺研究[J].有色金属(冶炼部分), 2012, 12:5-7. http://d.old.wanfangdata.com.cn/Periodical/ysjs-yl201212002
[40] Idris A, Khalid K, Omar W. Drying of silica sludge using microwave heating[J]. Applied thermal engineering, 2004, 24(5/6): 905-918. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac6ff0c9dbce4e8a3fd788d11e78f29f
[41] Pickles C A. Microwave drying of nickeliferous limonitic laterite ores[J]. Canadian metallurgical quarterly, 2005, 44(3): 397-408. doi: 10.1179/cmq.2005.44.3.397
[42] 马红周, 王耀宁, 燕超, 等.从高冰镍浸出渣中浸出铜[J].湿法冶金, 2015, 6:492-495. http://d.old.wanfangdata.com.cn/Periodical/sfyj201506015
[43] 姚金环, 丘雪萍, 李延伟, 等.微波辅助浸出铁矾渣中锌的试验研究[J].湿法冶金, 2017, 3:26-30. http://d.old.wanfangdata.com.cn/Periodical/sfyj201703005
[44] Al-Harahsheh M, Kingman S W. Microwave-assisted leaching-a review[J]. Hydrometallurgy, 2004, 73(3/4): 189-203. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024179961/
[45] Hua Y, Lin Z, Yan Z. Application of microwave irradiation to quick leach of zinc silicate ore[J]. Minerals engineering, 2002, 15(6): 451-456. doi: 10.1016/S0892-6875(02)00050-X
[46] Guo S, Chen G, Peng J H, et al. Microwave assisted grinding of ilmenite ore[J]. Transactions of nonferrous metals society of China, 2011, 21(9): 2122-2126. doi: 10.1016/S1003-6326(11)60983-7
[47] 陈艳, 白晨光, 何宜柱, 等.微波协助碾磨高钛高炉渣[J].钢铁研究学报, 2006, 18(8):5-8. doi: 10.3321/j.issn:1001-0963.2006.08.002
[48] Kumar P, Sahoo B K, De S, et al. Iron ore grindability improvement by microwave pre-treatment[J]. Journal of industrial and engineering chemistry, 2010, 16(5):805-812. doi: 10.1016/j.jiec.2010.05.008
[49] Amankwah R K, Ofori-Sarpong G. Microwave heating of gold ores for enhanced grindability and cyanide amenability[J]. Minerals engineering, 2011, 24(6):541-544. doi: 10.1016/j.mineng.2010.12.002
[50] 刘超, 巨少华, 张利波, 等.用微波硫酸化焙烧—水浸新工艺从铁矾渣中回收有价金属[J].湿法冶金, 2016, 35(1):36-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sfyj201601009