Experimental Research on Preparation of Ultra-low-density Ceramsite Proppant with Bauxite Waste Rock
-
摘要:
首次以铝土矿废石为主要原料,制备超低密度陶粒支撑剂。主要研究了原料预烧、烧成温度、烧成时间、添加剂用量等对支撑剂性能的影响。试验结果表明:铝土矿废石在750℃预烧2 h,添加剂CMC用量为1.5%,在1 320℃条件下焙烧150 min,制备的20~40目陶粒支撑剂产品体积密度为1.42 g/cm3,视密度为2.55 g/cm3,52 MPa的闭合压力下破碎率为5.35%,各项指标均符合国家石油天然气SY/T 5108-2014的行业标准要求。
Abstract:In this work, the ultra-low-density ceramsite proppant was first prepared using bauxite waste rock as the main raw material. The effects of raw material pre-calcination, sintering temperature, sintering time and additive dosage on proppant performance were studied. The test results showed that under the conditions of the pre-calcination time of 2 hours in 750℃, the additive CMC dosage of 1.5%, calcination time of 150 min in 1 320℃, the bauxite waste rock could be prepared into ceramsite proppant with the size of 0.42 and 0.84 mm, volume density of 1.42 g/cm3, the apparent density of 2.55 g/cm3, the breaking rate of 5.35% at the closing pressure of 52 MPa. All indicators were in line with the national oil and gas SY/T 5108-2014 industry standard requirements.
-
Key words:
- Bauxite waste rock /
- ultra-low-density /
- ceramsite proppant
-
表 1 铝土矿废石化学多元素分析结果 /%
Table 1. Multi-elements analysis results of bauxite waste rock
Element Al2O3 SiO2 Fe2O3 TiO2 K2O Na2O CaO MgO Content 40.26 42.33 1.30 1.95 0.11 0.01 0.16 0.07 表 2 铝土矿废石的物相分析结果 /%
Table 2. Chemical phase analysis resultsof bauxite waste rock
Mineral Diaspore Kaolinite Illite Hematite Anatase Rutile Content 5.10 89.90 1.10 1.30 1.55 0.40 表 3 不同预烧温度对成球性能的影响
Table 3. Effect of different pre-calcination temperatures on the balling properties
Pre-calcination temperature /℃ The properties of 20~40 mesh Phenomenon Yield /% Roundness/Sphericity 0 41.15 >0.6 Particle size is not uniform, roundness and sphericity is poor 650 49.62 >0.8 Particle size is uniform, roundness and sphericity is good 700 55.73 >0.9 Particle size is uniform, roundness and sphericity is good 750 62.36 >0.9 Particle size is uniform, roundness and sphericity is the best 800 48.35 >0.7 Particle size is not uniform, roundness and sphericity is poor, sphere is virtual and strength is low 表 4 铝土矿废石制备的超低密度陶粒支撑剂检测结果
Table 4. Testing results of ultra-low-density ceramicite proppant prepared by bauxite waste rock
检测项目 检测结果 低密标准要求 结果判定 体积密度/(g·cm-3) 1.42 ≤1.65 合格 视密度/(g·cm-3) 2.55 ≤3.00 合格 52 MPa破碎率/% 5.35 ≤9.0 合格 圆度 0.9 ≥0.80 合格 球度 0.9 ≥0.80 合格 浊度,FTU 53 ≤100 合格 酸溶解度/% 3.6 ≤5.0 合格 -
[1] 范殿贵.硬质粘土矿废石回填采空区的探讨[J].矿业快报, 2000(14):12-13. http://d.old.wanfangdata.com.cn/Conference/6416470
[2] 王二星.铝土矿浮选尾矿膏体堆存技术研究[J].轻金属, 2013(7):4-7. http://d.old.wanfangdata.com.cn/Conference/9184969
[3] 娄世彬, 李晓萍.关于铝土矿选尾矿的干法堆存技术探讨[J].铝镁通讯, 2016(2):1-3. http://www.cqvip.com/QK/91337X/201602/669697975.html
[4] 冯安生, 吴彬, 吕振福, 等.我国铝土矿资源开发利用"三率"调查与评价[J].矿产保护与利用, 2016(5):16-18. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=bd1a45fa-33c2-4439-9a18-24d1159451cf
[5] 刘东方, 刘文凯, 薛宝达, 等.铝土矿尾矿合成莫来石的研究[J].矿业科学学报, 2016(3):256-260. http://d.old.wanfangdata.com.cn/Periodical/nhcl201704004
[6] 申献江, 马冬阳, 张梅, 等.铝土矿尾矿除杂及合成刚玉-莫来石研究[J].耐火材料, 2017(4):256-269. http://d.old.wanfangdata.com.cn/Periodical/nhcl201704004
[7] 曲占庆, 曹彦超, 郭天魁, 等.一种超低密度支撑剂的可用性评价[J].石油钻采工艺, 2016, 38(3):372-377. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201603021
[8] 李树良.ULW-1.05超低密度支撑剂评价及应用[J].油气田地面工程, 2013, 32(9):66-67. doi: 10.3969/j.issn.1006-6896.2013.9.037
[9] 王晋槐, 赵友谊, 龚红宇, 等.石油压裂陶粒支撑剂研究进展[J].硅酸盐通报, 2010 (3):633-636. http://d.old.wanfangdata.com.cn/Periodical/gsytb201003027
[10] 师志虎, 石磊, 等.石油压裂陶粒支撑剂研究进展探讨[J].中国石油和化工标准与质量, 2013(8):79. doi: 10.3969/j.issn.1673-4076.2013.08.078
[11] 程占岭.探讨石油压裂陶粒支撑剂研究进展[J].化工管理, 2014, (26):125-125. doi: 10.3969/j.issn.1008-4800.2014.26.103
[12] 崔冰峡, 刘军, 陈耀斌, 等.陶粒压裂支撑剂研究进展[J].硅酸盐通报, 2016(2):458-463. http://d.old.wanfangdata.com.cn/Periodical/gsytb201602022
[13] SY/T 5108-2014.中华人民共和国石油天然气行业标准《水力压裂和砾石充填作业用支撑剂性能测试方法》[S].石油工业出版社, 2015, 3: 5-22.
[14] 吕宝强, 刘顺, 毕卫宇, 等.低密度陶粒支撑剂的指标工艺研究[J].铸造技术, 2012, 33(7):771-773. http://cdmd.cnki.com.cn/Article/CDMD-10422-1016164396.htm