Study on Dehydration and Comprehensive Utilization of Shield Mud-based Ceramsites
-
摘要:
针对盾构泥含水率高以及综合利用的问题,研究了pH值、助滤剂种类(GPB、粉煤灰、石膏、谷糠)和压力对含水率影响,以及加入添加剂(AlCl3、ZnCl2、Fe2O3、Fe3O4、NH4HCO3)烧制成陶粒对亚甲基蓝溶液COD去除的效果。试验结果表明,4种助滤剂中改性酰胺絮凝剂(GPB)能更有效地降低盾构泥的含水率;在pH值为4且压力值为800 Pa的条件下,加入GPB可以将含水率值从38.89%降至24.40%;添加剂筛选试验表明,通过添加NH4HCO3烧制的陶粒能有效降低亚甲基蓝溶液的COD;添加剂用量试验表明,通过添加10% NH4HCO3焙烧而成的陶粒能够将亚甲基蓝溶液中的COD值从162.75 mg/L降到90.64 mg/L。
Abstract:Aiming at the problems of high water content and comprehensive utilization of shield mud, we studied the effects of pH, type of filter aid(GPB, fly ash, gypsum, chaff) and pressure on the moisture content as well as the removal of COD from methylene blue solution by sintered ceramsites with additives (AlCl3, ZnCl2, Fe2O3, Fe3O4, and NH4HCO3). The results showed that the modified amide flocculant (GPB) could reduce the moisture content of shield mud effectively in the four kinds of filter aid. Under the condition of pH value of 4 and pressure of 800 Pa, adding GPB could reduce the moisture content from 38.89% to 24.40%. Screening test results for additives shown that the sintered ceramsites made by adding NH4HCO3 could reduce COD of methylene blue solution effectively. The additive dosage test showed that the sintered ceramsites made by adding 10% NH4HCO3 could reduce the COD of methylene blue solution from 162.75 mg/L to 90.64 mg/L.
-
Key words:
- shield mud /
- dehydration /
- ceramsites /
- adsorption
-
表 1 原料矿物组成分析结果 /%
Table 1. Analysis results of mineral composition of raw materials
成分 石英 云母 高岭石 赤铁矿 褐铁矿 含量/% 34.74 8.49 42.62 9.53 4.62 表 2 原料粒度分布 /%
Table 2. Particle size distribution of raw materials
粒级/mm +0.83 -0.83+0.074 -0.074 产率 59.05 8.56 32.79 -
[1] 刘淑娟.咸阳市地铁建设对城市环境景观的影响分析研究[J].环境科学与管理, 2017, 42(7):57-61. doi: 10.3969/j.issn.1673-1212.2017.07.014
[2] 师雯洁, 程文, 任立志, 等.地铁施工废弃泥浆处理试验研究[J].水资源与水工程学报, 2017, 28(1):141-145. http://d.old.wanfangdata.com.cn/Periodical/xbszyysgc201701025
[3] 梁止水, 杨才千, 高海鹰, 等.建筑工程废弃泥浆快速泥水分离试验研究[J].东南大学学报(自然科学版), 2016, 46(2):427-433. http://d.old.wanfangdata.com.cn/Periodical/dndxxb201602031
[4] 李旭.泥水盾构废弃泥浆絮凝脱水试验研究[J].铁道建筑, 2018, 58(5):144-147. http://d.old.wanfangdata.com.cn/Periodical/tdjz201805034
[5] 周昊宸, 周向清.盾构泥水固液快速分离用改性无机絮凝剂及改性方法和应用: 108975474A[P].2018-12-11.
[6] 元敬顺, 赵立会, 李振华, 等.淤泥对污泥、粉煤灰-页岩陶粒性能的影响[J].河北建筑工程学院学报, 2016, 34(3):52-55. doi: 10.3969/j.issn.1008-4185.2016.03.011
[7] 刘爽, 支家强, 吴鹏, 等.污水厂污泥与河道淤泥联合烧制陶粒的技术研究[J].砖瓦, 2017(7):18-24. http://d.old.wanfangdata.com.cn/Periodical/zw201707003
[8] 张卓, 张峰君, 谢发之, 等.盾构渣土基免烧免蒸陶粒固化重金属离子研究[J].广州化工, 2015, 43(9):51-53. doi: 10.3969/j.issn.1001-9677.2015.09.021
[9] 郝彤, 王帅, 李鑫箫, 等.利用盾构渣土制备水泥混合材的可行性研究[J].硅酸盐通报, 2019, 38(4):1018-1023. http://d.old.wanfangdata.com.cn/Periodical/gsytb201904015
[10] 韩婷婷, 吴思麟, 吕一彦.泥浆中水分形态对抗剪强度与流变性的影响[J].长江科学院院报, 2018, 35(2):104-108. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201802021
[11] Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of hazardous materials, 2004, 106(2-3): 83-92. doi: 10.1016/j.jhazmat.2003.11.014
[12] 林春绵, 王建超, 甄万顺.利用污泥烧制陶粒滤料的实验研究[J].浙江工业大学学报, 2018, 46(5):585-590. doi: 10.3969/j.issn.1006-4303.2018.05.020
[13] 魏博, 张一敏, 包申旭.煅烧制度对高岭土活性及地聚物性能的影响[J].非金属矿, 2016, 39(4):31-34. doi: 10.3969/j.issn.1000-8098.2016.04.010
[14] 李天鹏.新型陶粒的制备、表面改性及处理模拟废水机制研究[D].上海: 东华大学, 2017.