蒙脱石剥离二维纳米片及其功能化应用

白皓宇, 赵云良, 王伟, 张婷婷, 宋少先. 蒙脱石剥离二维纳米片及其功能化应用[J]. 矿产保护与利用, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015
引用本文: 白皓宇, 赵云良, 王伟, 张婷婷, 宋少先. 蒙脱石剥离二维纳米片及其功能化应用[J]. 矿产保护与利用, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015
BAI Haoyu, ZHAO Yunliang, WANG Wei, ZHANG Tingting, SONG Shaoxian. Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015
Citation: BAI Haoyu, ZHAO Yunliang, WANG Wei, ZHANG Tingting, SONG Shaoxian. Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015

蒙脱石剥离二维纳米片及其功能化应用

  • 基金项目:
    国家自然科学基金项目(51874220,51904215)
详细信息
    作者简介: 白皓宇(1996-), 男, 硕士研究生, E-mail:bhy@whut.edu.cn
    通讯作者: 赵云良(1987-), 男, 副教授, 博士生导师, E-mail:zyl286@whut.edu.cn
  • 中图分类号: TD975+.5;TB34

Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications

More Information
  • 蒙脱石作为一类典型的层状黏土矿物具有优异的物理化学特性,可通过剥离分离出具有二维结构特性的高径厚比片层单体。常用的剥离制备二维蒙脱石纳米片的方法有化学法、机械法和化学-机械法,通过剥离处理可使层间结合较弱的蒙脱石片层分离并均匀分散。剥离制备的二维蒙脱石纳米片可用于环境功能材料、储能材料、阻燃材料、纳米流体通道和智能材料等先进矿物功能材料的制备。本文综述了近年来二维蒙脱石纳米片的剥离制备方法及其功能化应用的研究进展,为层状黏土矿物高值化应用和深化研究提供思路。

  • 加载中
  • 图 1  (a) 蒙脱石层状晶体结构示意图(b)蒙脱石晶层硅氧四面体和铝氧八面体俯视示意图

    Figure 1. 

    图 2  蒙脱石层间阳离子种类对超声法剥离制备蒙脱石二维纳米片的影响[31]

    Figure 2. 

    图 3  (a) 超声-冷冻解冻法循环剥离蒙脱石示意图;(b)未剥离蒙脱石和超声-冷冻/解冻循环剥离后的蒙脱石XRD图谱[32]

    Figure 3. 

    图 4  (a) 蒙脱石二维纳米片与壳聚糖自组装制备水凝胶机理图及(b,c)水凝胶的三维网状结构[36]

    Figure 4. 

    图 5  (a) 铁-壳聚糖/蒙脱石自组装凝胶对亚甲蓝的吸附和降解去除率,pH=3;(b)铁-壳聚糖/蒙脱石自组装凝胶循环性能;(c)铁-壳聚糖/蒙脱石自组装凝胶吸附/光芬顿反应协同降解亚甲基蓝机理图[40]

    Figure 5. 

    图 6  (a) PVA/SA/CTS-MMTNS凝胶球;(b)冷冻干燥后的PVA/SA/CTS-MMTNS凝胶球;(c)(d)为凝胶球内部多孔结构的SEM形貌图[41];(e)CS-MMTNS中空层状球壳制备过程; (f)CS-MMTNS中空层状球壳SEM测试形貌;(g)CS-MMTNS中空球壳TEM测试形貌[42]

    Figure 6. 

    图 7  (a) 二维蒙脱石-硬脂酸相变储能材料制备及结构示意图;(b)MtNs-SA的DSC曲线和(c)引入AgNPs后先变材料的DSC曲线;(d)AgNPs分布位置与对应传热路径示意图[46-48]

    Figure 7. 

    图 8  (a) FPU和负载蒙脱石后(b)FPU燃烧以及负载蒙脱石FPU燃烧后的(c)表面与(d)截面图;(e)FPU和(f)负载蒙脱石纳米片后的FPU的SEM形貌图;(g)不同厚度蒙脱石层阻燃机理示意图[51]

    Figure 8. 

    图 9  (a) 层状有序排列蒙脱石纳米复合材料制备过程示意图;PVA/MMT薄膜在燃烧实验(b)前(c)后的截面SEM图像;PU燃烧后的(d)主视图和(e)俯视图以及负载PVA/MMT的PU燃烧后(f)主视图和(g)俯视图[52]

    Figure 9. 

    图 10  (a) 剥离蒙脱石纳米片TEM测试图;(b)CTAB改性蒙脱石纳米片重组装制备的具有二维通道的柔性薄膜(RMM);(c)RMM截面层状结构SEM测试图;RMM离子传输特性测试:(d)在不同浓度KCl溶液中的Ⅰ-Ⅴ曲线(e)电解质浓度与质子传导效率间的关系;RMM能量转化测试:(f)不同pH条件下歌浓度梯度产生的扩散电流(g)不同浓度梯度(1,10,100)下的Ⅰ-Ⅴ曲线[62]

    Figure 10. 

    图 11  (a) 制备的MMT-polyPCDA-APTES薄膜的热变色性质, (b)热变色机理示意图[69];(c)蒙脱石-蛭石双层黏土基薄膜(CCBM);在不同湿度(d)和不同环境温度(e)中CCBM的形变情况;(f)组分形变差异造成双层异质结构发生弯曲机理示意图[70]

    Figure 11. 

  • [1]

    SKIPPER N T, SPOSITO G, SOPER A K. Surface geochemistry of the clay minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3358-3364. doi: 10.1073/pnas.96.7.3358

    [2]

    Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286. doi: 10.1038/nature04969

    [3]

    Geim A K. Graphene:status and prospects[J]. Science, 2009, 5934(324):1530-1534. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201605023

    [4]

    Mas-Ballesté R G C G J. 2D materials:to graphene and beyond[J]. Nanoscale, 2011, 1(3):20-30. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220842962/

    [5]

    Bhimanapati G R, Lin Z, Meunier V, et al. Recent Advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539. doi: 10.1021/acsnano.5b05556

    [6]

    Ling X, Lin Y, Ma Q, et al. Parallel stitching of 2D materials[J]. Advanced materials, 2016, 28(12):2322-2329. doi: 10.1002/adma.201505070

    [7]

    Bonaccorso F, Colombo L, Yu G, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217):1246501. doi: 10.1126/science.1246501

    [8]

    Zhu T T, Zhou C H, Kabwe F B, et al. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites[J]. Applied Clay Science, 2019, 169:48-66. doi: 10.1016/j.clay.2018.12.006

    [9]

    Liu Z, Teng Y, Teng F, et al. Charge storage performances of micro-supercapacitor predominated by two-dimensional (2D) crystal structure[J]. Nano Energy, 2016, 27:58-67. doi: 10.1016/j.nanoen.2016.06.025

    [10]

    Zhang L, Yao H, Li Z, et al. Synthesis of delaminated layered double hydroxides and their assembly with graphene oxide for supercapacitor application[J]. Journal of Alloys and Compounds, 2017, 711:31-41. doi: 10.1016/j.jallcom.2017.03.348

    [11]

    Szendrei-Temesi K S O B. Lithium tin sulfide-a high-refractive-index 2D material for humidity-responsive photonic crystals[J]. Advanced functional materials, 2018, 14(28):1705740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e56fbb5bc7cc10e44b3fff321d5deecc

    [12]

    Chauhan N, Chawla S, Pundir C S, et al. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode[J]. Biosens Bioelectron, 2017, 89(Pt 1):377-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42a4565257ddca8a621f6062fb32e495

    [13]

    Brigattia M F, Galanb E, Thengc B K G. Charpter 2 structure and mineralogy of clay minerals[J]. Development of clay science, 2006(1):19-86.

    [14]

    Thomas A W L H. Adsorption studies on clay minerals Ⅸ. ion-exchange properties of natural and thermally altered montmorillonite[J]. Soil Science Society of America Journal, 1965, 3(29):627-651. https://www.researchgate.net/publication/250122555_Adsorption_Studies_on_Clay_Minerals_IX_Ion-Exchange_Properties_of_Natural_and_Thermally_Altered_Montmorillonite1

    [15]

    黄缓缓.金属阳离子对蒙脱石水化膨胀影响的试验研究[J].选煤技术, 2018(4):19-22. http://d.old.wanfangdata.com.cn/Periodical/xmjs201804004

    [16]

    Zhou Y, LaChance A M, Smith A T, et al. Strategic design of clay-based multifunctional materials:from natural minerals to nanostructured membranes[J]. Advanced functional materials, 2019, 29(16):1807611. doi: 10.1002/adfm.201807611

    [17]

    Nicolosi V, Chhowalla M, Kanatzidis M G. Liquid exfoliation of layered materials[J]. Science, 2013, 6139(340):1226419. http://d.old.wanfangdata.com.cn/Periodical/nmyj-z201801028

    [18]

    Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571. doi: 10.1126/science.1194975

    [19]

    Park K H, Kim B H, Song S H, et al. Exfoliation of non-oxidized graphene flakes for scalable conductive film[J]. Nano letters, 2012, 12(6):2871-2876. doi: 10.1021/nl3004732

    [20]

    Gintert M J, Jana S C, Miller S G. A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems[J]. Polymer, 2007, 48(14):4166-4173. doi: 10.1016/j.polymer.2007.05.053

    [21]

    Ang P K, Wang S, Bao Q, et al. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor[J]. ACS nano, 2009, 3(11):3587-3594. doi: 10.1021/nn901111s

    [22]

    Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, et al. Ex-MWNTs:graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes[J]. Nano letters, 2009, 9(4):1527-1533. doi: 10.1021/nl803585s

    [23]

    Thasirisap E, Vittayakorn N, Seeharaj P. Surface modification of TiO2 particles with the sono-assisted exfoliation method[J]. Ultrasonics Sonochemistry, 2017, 39:733-740. doi: 10.1016/j.ultsonch.2017.06.002

    [24]

    Sanchez-Solis A, Garcia-Rejon A, Estrada M, et al. Properties of poly(ethylene terephthalate)-poly(ethylene naphthalene 2, 6-dicarboxylate) blends with montmorillonite clay[J]. Polymer international, 2005, 12(54):1669-1672. http://cn.bing.com/academic/profile?id=0897bce3fe913ddf5668b37888c47227&encoded=0&v=paper_preview&mkt=zh-cn

    [25]

    郑翔, 孙海标, 张炫辉, 等.蒙脱石剥离方法的对比与选择[J].矿物学报, 2014, 34(3):427-432. http://d.old.wanfangdata.com.cn/Periodical/kwxb201403021

    [26]

    Jiankun L, Yucai K, Zongneng Q, et al. Study on intercalation and exfoliation behavior of organoclays in epoxy resin[J]. Journal of Polymer Science Part B:Polymer Physics, 2000, 1(39):115-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c37e99d502d4ef683e89a2f6b3a4364

    [27]

    吴选军, 袁继祖, 余永富.双官能团有机改性蒙脱石的制备及性能[J].非金属矿, 2009, 32(4):1-4. doi: 10.3969/j.issn.1000-8098.2009.04.001

    [28]

    Huang T, Chiou J, Wang Y, et al. Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism[J]. Journal of Polymer Research, 2016, 23(8):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ef6fbe0c8a95f351d59cf4b276ffe85

    [29]

    李存军, 卢红, 林茵茵, 等.蒙脱石的湿法机械球磨剥离[J].硅酸盐通报, 2016, 35(5):1372-1377. http://d.old.wanfangdata.com.cn/Periodical/gsytb201605008

    [30]

    Bai H, Zhao Y, Zhang X, et al. Correlation of exfoliation performance with interlayer cations of montmorillonite in the preparation of two-dimensional nanosheets[J]. Journal of the American Ceramic Society, 2019, 102(7):3908-3922. doi: 10.1111/jace.16285

    [31]

    Bai H, Zhao Y, Wang W, et al. Effect of interlayer cations on exfoliating 2D montmorillonite nanosheets with high aspect ratio:From experiment to molecular calculation[J]. Ceramics International, 2019, 45(14):17054-17063. doi: 10.1016/j.ceramint.2019.05.257

    [32]

    Chen T, Yuan Y, Zhao Y, et al. Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation[J]. Langmuir:the ACS journal of surfaces and colloids, 2019, 35(6):2368-2374. doi: 10.1021/acs.langmuir.8b04171

    [33]

    Stevens L, Williams K, Han W Y, et al. Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route[J]. Chemical Engineering Journal, 2013, 215-216:699-708. doi: 10.1016/j.cej.2012.11.058

    [34]

    Zhong Y, Wang S. Exfoliation and yield behavior in nanodispersions of organically modified montmorillonite clay[J]. Journal of Rheology, 2003, 47(2):483-495. doi: 10.1122/1.1545074

    [35]

    Wang W, Zhao Y, Yi H, et al. Pb(Ⅱ) removal from water using porous hydrogel of chitosan-2D montmorillonite[J]. International Journal of Biological Macromolecules, 2019, 128:85-93. doi: 10.1016/j.ijbiomac.2019.01.098

    [36]

    Wang W, Zhao Y, Yi H, et al. Preparation and characterization of self-assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan[J]. Nanotechnology, 2018, 29(2):25605. doi: 10.1088/1361-6528/aa9ba4

    [37]

    Kang S, Zhao Y, Wang W, et al. Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent[J]. Applied Surface Science, 2018, 448:203-211. doi: 10.1016/j.apsusc.2018.04.037

    [38]

    Ruppert G, Bauer R, Heisler G. The photo-Fenton reaction - an effective photochemical wastewater treatment process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1993, 73(1):75-78. doi: 10.1016/1010-6030(93)80035-8

    [39]

    Comninellis C, Kapalka A, Malato S, et al. Advanced oxidation processes for water treatment advances and trends for R & D[J]. Journal of Chenmical Technology and Biotechnology, 2008, 6(83):769-776. http://cn.bing.com/academic/profile?id=7d3d9f5773f8a3c557df52600464555e&encoded=0&v=paper_preview&mkt=zh-cn

    [40]

    Zhao Y, Kang S, Qin L, et al. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets:Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction[J]. Chemical Engineering Journal, 2020, 379:122322. doi: 10.1016/j.cej.2019.122322

    [41]

    Wang W, Zhao Y, Bai H, et al. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite[J]. Carbohydr Polym, 2018, 198:518-528. doi: 10.1016/j.carbpol.2018.06.124

    [42]

    Chen T, Chen P, Zhao Y, et al. Synthesis of montmorillonite-chitosan hollow and hierarchical mesoporous spheres with single-template layer-by-layer assembly[J]. Journal of Materials Science & Technology, 2019, 35(10):2325-2330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxjsxb-e201910027

    [43]

    Przepiórski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption[J]. Applied Surface Science, 2004, 225(1-4):235-242. doi: 10.1016/j.apsusc.2003.10.006

    [44]

    Hong Y, Xin-shi G. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials and Solar Cells, 2000, 64(1):37-44. doi: 10.1016/S0927-0248(00)00041-6

    [45]

    Alkan C, Sarı A, Karaipekli A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(1):143-147. doi: 10.1016/j.solmat.2008.09.009

    [46]

    Yi H, Zhan W, Zhao Y, et al. A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties[J]. Solar Energy Materials and Solar Cells, 2019, 192:57-64. doi: 10.1016/j.solmat.2018.12.015

    [47]

    Yi H, Zhan W, Zhao Y, et al. Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances:Effect of shell thickness[J]. Solar Energy Materials and Solar Cells, 2019, 200:109935. doi: 10.1016/j.solmat.2019.109935

    [48]

    Zhan W, Zhao Y, Yuan Y, et al. Development of 2D-Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity[J]. Solar Energy Materials and Solar Cells, 2019, 201:110090. doi: 10.1016/j.solmat.2019.110090

    [49]

    Kourtides D A, Parker J A. Assessment of relative flammability and thermochemical properties of some thermoplastic materials[J]. Polymer Engineering and Science, 1978, 18(11):855-860. doi: 10.1002/pen.760181105

    [50]

    Camino G, Grassie N, McNeill I C. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly(methyl methacrylate)[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1978, 16(1):95-106. doi: 10.1002/pol.1978.170160110

    [51]

    Peng C, Yunliang Z, Wei W, et al. Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan-montmorillonite nanosheet nembrane assembled on flexible polyurethane foam[J]. Polymer, 2019, 213(11):1-13. https://www.mdpi.com/2073-4360/11/2/213/pdf

    [52]

    Ding F, Liu J, Zeng S, et al. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly[J]. Sci Adv, 2017, 3(7):e1701212. doi: 10.1126/sciadv.1701212

    [53]

    Koltonow A R, Huang J. Ionic transport. Two-dimensional nanofluidics[J]. Science, 2016, 351(6280):1395-1396. doi: 10.1126/science.aaf5289

    [54]

    Kim S J, Wang Y, Lee J H, et al. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel[J]. Physical review letters, 2007, 99(4):44501. doi: 10.1103/PhysRevLett.99.044501

    [55]

    Kim S J, Li L D, Han J. Amplified electrokinetic response by concentration polarization near nanofluidic channel[J]. Langmuir:the ACS journal of surfaces and colloids, 2009, 25(13):7759-7765. doi: 10.1021/la900332v

    [56]

    Cao Q, Zuo C, Li L, et al. Electroosmotic flow in a nanofluidic channel coated with neutral polymers[J]. Microfluidics and Nanofluidics, 2010, 9(6):1051-1062. doi: 10.1007/s10404-010-0620-5

    [57]

    Pal Singh K, Kumar M, Kumari K. Field-effect control of electrokinetic ion transport in a nanofluidic channel[J]. Journal of Applied Physics, 2011, 110(8):84301. doi: 10.1063/1.3651634

    [58]

    Lao J, Lv R, Gao J, et al. Aqueous stable Ti3C2 mxene membrane with fast and photoswitchable nanofluidic transport[J]. ACS Nano, 2018, 12(12):12464-12471. doi: 10.1021/acsnano.8b06708

    [59]

    Barton R A, Ilic B, Verbridge S S, et al. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel[J]. Nano letters, 2010, 10(6):2058-2063. doi: 10.1021/nl100193g

    [60]

    Cheng L, Cao D. Designing a thermo-switchable channel for nanofluidic controllable transportation[J]. ACS nano, 2011, 5(2):1102-1108. doi: 10.1021/nn102754g

    [61]

    Meili L, Meng H, Lianyu T, et al. Two-dimensional nanochannel arrays based on flexible montmorillonite membranes[J]. Acs Appl Mater Inter, 2018(10):44915-44923. http://cn.bing.com/academic/profile?id=f23285be81f297ccd213456d84bc97b4&encoded=0&v=paper_preview&mkt=zh-cn

    [62]

    Zhou Y, Ding H, Smith A T, et al. Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(23):14089-14096. doi: 10.1039/C9TA00801B

    [63]

    Roy D, Cambre J N, Sumerlin B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science, 2010, 35(1):278-301. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.progpolymsci.2009.10.008/

    [64]

    Russell T P. Surface-responsive materials[J]. Science, 2002, 5583(297):964-967. http://d.old.wanfangdata.com.cn/Periodical/gncl2014z1001

    [65]

    Wilson H R, Cantow H, Eck W. Semi-interpenetrating polymer networks with temperature-dependent light transmission-a new smart material for solar technology[J]. Advanced Materials, 1995, 7(9):800-803. doi: 10.1002/adma.19950070909

    [66]

    Unger K, Salzmann P, Masciullo C, et al. Novel light-responsive biocompatible hydrogels produced by initiated chemical vapor deposition[J]. ACS applied materials & interfaces, 2017, 9(20):17408-17416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=431dc31b490ee1c06826d5ac5d330b96

    [67]

    Yang F, Guo Z. A facile approach to transform stainless steel mesh into pH-responsive smart material[J]. RSC Advances, 2015, 5(18):13635-13642. doi: 10.1039/C4RA16607H

    [68]

    Lavalle P, Voegel J, Vautier D, et al. Dynamic aspects of films prepared by a sequential deposition of species:perspectives for smart and responsive materials[J]. Advanced materials (Deerfield Beach, Fla.), 2011, 23(10):1191-1221. doi: 10.1002/adma.201003309

    [69]

    Peng J, Cheng Y, Tomsia A P, et al. Thermochromic Artificial Nacre Based on Montmorillonite[J]. ACS applied materials & interfaces, 2017, 9(29):24993-24998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f081089fc22bd93969d3ee4f740f1db5

    [70]

    Gogoi R K, Raidongia K. Strategic shuffling of clay layers to imbue them with responsiveness[J]. Advanced Materials, 2017, 29(24):1701164. doi: 10.1002/adma.201701164

  • 加载中

(11)

计量
  • 文章访问数:  1844
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2019-10-17
刊出日期:  2019-12-25

目录