黏土矿物的结构性质及其对浮选的影响

宋斯宇, 顾帼华, 王艳红, 方天然. 黏土矿物的结构性质及其对浮选的影响[J]. 矿产保护与利用, 2020, 40(2): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2020.02.006
引用本文: 宋斯宇, 顾帼华, 王艳红, 方天然. 黏土矿物的结构性质及其对浮选的影响[J]. 矿产保护与利用, 2020, 40(2): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2020.02.006
Song Siyu, Gu Guohua, Wang Yanhong, Fang Tianran. The Structure Property of Clay Minerals and Their Effects on Flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2020.02.006
Citation: Song Siyu, Gu Guohua, Wang Yanhong, Fang Tianran. The Structure Property of Clay Minerals and Their Effects on Flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 43-50. doi: 10.13779/j.cnki.issn1001-0076.2020.02.006

黏土矿物的结构性质及其对浮选的影响

  • 基金项目: 湖南省自然科学基金(2019JJ50835);中南大学研究生创新创业项目(2019zzts697);战略含钙矿物资源清洁高效利用湖南省重点实验室(2018TP1002)
详细信息
    作者简介: 宋斯宇(1994-),男,硕士研究生,研究方向为黏土对硫化矿浮选的影响
    通讯作者: 王艳红(1987-),女,博士,讲师,主要从事细粒脉石矿物的浮选理论与技术研究。
  • 中图分类号: TD973+.1

The Structure Property of Clay Minerals and Their Effects on Flotation

More Information
    Corresponding author: Wang Yanhong
  • 黏土矿物属于层状硅酸盐矿物,其中高岭石、蒙脱石是两类最为常见的脉石矿物,是矿物浮选分离的重大挑战之一。从黏土矿物结构和物理化学性质分析了其对浮选的影响及其机理,并综述了常见的黏土处理方法及其机理。由于黏土矿物的表面电性,当其分散在水中时会水化膨胀并剥离成为片层,组成不同的聚集体,改变矿浆流变性质从而影响浮选。黏土还会与其他矿物颗粒相互作用,造成细泥罩盖和机械夹带,影响精矿品位。为消除黏土矿物对浮选的不利影响,可采用预先脱泥、高剪切调浆、超声预处理等物理方法和添加黏土抑制剂、使用电解质溶液等化学方法进行处理。对黏土矿物在浮选中的影响和处理方法进行总结和展望,有利于为含黏土的矿石浮选理论及工艺研究提供参考。

  • 加载中
  • 图 1  高岭石晶体结构单元[3]

    Figure 1. 

    图 2  蒙脱石晶体结构单元[3]

    Figure 2. 

    图 3  黏土颗粒的聚集方式:(a)面-面;(b)边-面;(c)边-边[30]

    Figure 3. 

    图 4  黏土矿物的聚集形式:(a)膨润土,(b)高岭石[31]

    Figure 4. 

    表 1  国外海水或盐水选矿实例[68]

    Table 1.  Application of saline water or seawater in flotation industry abroad

    项目名称 公司 国家 水源
    Batu Hijau Newmont 印度尼西亚 海水
    Las Luces Minera Las Cenizas 智利 海水
    Michilla Antofagasta 智利 海水
    KCGM Barrack/Newmont 澳大利亚 盐水
    Mt Keith BHP Billiton 澳大利亚 盐水
    Raglan Xstrata 加拿大 盐水
    Texad Closed 加拿大 海水
    Tocopilla Closed 智利 海水
    Esperanza-under development Antofagasta 智利 海水
    下载: 导出CSV
  • [1]

    杨畅.黏土泥化抑制对煤泥水沉降性能影响研究[D].徐州:中国矿业大学,2016.

    [2]

    梁龙.煤泥中黏土矿物的选择性团聚机理研究[D].徐州:中国矿业大学,2017.

    [3]

    Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores-a critical review[J]. Applied Clay Science, 2019, 170:57-69. doi: 10.1016/j.clay.2019.01.013

    [4]

    Schoonheydt R A, Johnston C T. Chapter 3 surface and interface chemistry of clay minerals[J]. Developments in Clay science, 2006, 5:87-113. https://www.sciencedirect.com/science/article/pii/S1572435205010032

    [5]

    Lagaly G, Ogawa M, Dékány, I. Chapter 7.3 Clay mineral organic interactions[M]. Developments in Clay Science. Elsevier Ltd, 2006.

    [6]

    杨宗义,刘文礼,焦小淼,等.蒙脱石分散体系中用Zeta电位修正静电作用能的计算[J].煤炭学报,2017(6):1572-1578. http://www.cqvip.com/QK/96550X/201706/672760485.html

    [7]

    刘晓文.一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究[D].长沙:中南大学,2003.

    [8]

    Low P F. The swelling of clay:II. montmorillonites[J]. Soil Science Society of America Journal, 1980, 44(4):667-676 doi: 10.2136/sssaj1980.03615995004400040001x

    [9]

    OLPHEN, Van H. An introduction to clay colloid chemistry[J]. Soil Science, 1964, 97(4):290. https://www.researchgate.net/publication/220020708_An_Introduction_to_Clay_Colloid_Chemistr

    [10]

    杨宗义.煤泥水体系中抑制蒙脱石膨胀分散的量子化学研究[D].北京:中国矿业大学(北京),2018.

    [11]

    严昊炜,崔家瑞,张泽朋.层间阳离子对蒙脱石凝胶性能的影响[J].中国粉体技术,2019(3):48-54. http://d.old.wanfangdata.com.cn/Periodical/zgftjs201903009

    [12]

    Kittrick J A. Interlayer forces in montmorillonite and vermiculite[J]. Soil Sci Soc Amer proc, 1969, 33(2):217-222. doi: 10.2136/sssaj1969.03615995003300020017x

    [13]

    孙红娟,彭同江,陈彦翠.层间阳离子对蒙脱石结构与水化膨胀性能的影响[J].非金属矿,2011(1):11-13. doi: 10.3969/j.issn.1000-8098.2011.01.004

    [14]

    Norrish K, Quirk J P. Crystalline swelling of montmorillonite:use of electrolytes to control swelling[J]. Nature, 1954, 173(4397):255-256. doi: 10.1038/173255a0

    [15]

    韩秀山.膨润土(蒙脱石)阳离子的交换容量——CEC[J].矿产保护与利用,2007(2):16. doi: 10.3969/j.issn.1001-0076.2007.02.015 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=87e31eee-9ded-460e-a389-36660aec914d

    [16]

    Nye P H. The measurement and mechanism of ion diffusion in soil:I. The relation between self-diffusion and bulk diffusion[J]. European Journal of Soil Science, 1966, 17(1):16-23. https://www.researchgate.net/publication/230014550_Measurement_and_mechanism_of_ion_diffusion_in_soil-X

    [17]

    Charles D. Shackelford, David E. Daniel. Diffusion in saturated soil. I:background[J]. 1991, 117(3):467-484. https://www.researchgate.net/publication/248877875_Diffusion_in_Saturated_Soil_I_Background

    [18]

    Sparks, Donald L. Soil physical chemistry[J]. Soil Science, 1988, 145(3):231-232. doi: 10.1097/00010694-198803000-00012

    [19]

    靳朝辉.离子交换动力学的研究[D].天津:天津大学,2004.

    [20]

    杜伟.极化效应对黏土矿物中离子交换吸附的影响[D].重庆:西南大学,2017.

    [21]

    Senior G D, Thomas S A. Development and implementation of a new flowsheet for the flotation of a low grade nickel ore[J]. International Journal of Mineral Processing, 2005, 78(1):49-61. doi: 10.1016/j.minpro.2005.08.001

    [22]

    Schubert H. On the optimization of hydrodynamics in fine particle flotation[J]. Minerals Engineering, 2008, 21(12-14):930-936. doi: 10.1016/j.mineng.2008.02.012

    [23]

    Ndlovu B, Becker M, Forbes E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries[J]. Minerals Engineering, 2011, 24(12):1314-1322. doi: 10.1016/j.mineng.2011.05.008

    [24]

    He, M.Z., Wang, Y.M., Forssberg, E. Slurry rheology in wet ultrafine grinding of industrial minerals:a review[J]. Powder Technol, 2004, 147(1):94-112. https://www.sciencedirect.com/science/article/abs/pii/S0032591004003869

    [25]

    张鹏,吴志超,敖华军.污泥的黏度与浓度、温度三者关系式的实验推导[J].环境污染治理技术与设备,2006(3):72-74. http://d.wanfangdata.com.cn/periodical/hjwrzljsysb200603016

    [26]

    He M, Wang Y, Forssberg E. Slurry rheology in wet ultrafine grinding of industrial minerals:a review[J]. Powder Technology, 2004, 147(1-3):94-112. doi: 10.1016/j.powtec.2004.09.032

    [27]

    Philippe A M, Baravian C, Bezuglyy V, et al. Rheological study of two-dimensional very anisometric colloidal particle suspensions:from shear-Induced orientation to viscous dissipation[J]. Langmuir, 2013, 29(17):5315-5324. doi: 10.1021/la400111w

    [28]

    Vali H, Bachmann L. Ultrastructure and flow behavior of colloidal smectite dispersions[J]. Journal of Colloid & Interface Science, 1988, 126(1):278-291. doi: 10.1016/0021-9797(88)90122-1

    [29]

    王琛,刘润清,孙伟,等.高泥氧化锌矿脱泥/不脱泥浮选对矿浆流变性能的影响[J].矿冶工程,2018(5):44-47. doi: 10.3969/j.issn.0253-6099.2018.05.011

    [30]

    Van Olphen H, Hsu P H. An introduction to clay colloid chemistry[J]. Soil Science, 1978, 126(1):59. https://www.onacademic.com/detail/journal_1000038989916810_9c69.html

    [31]

    Nestor Cruz, Yongjun Peng, Elaine Wightman, Ning Xu.The interaction of clay minerals with gypsum and its effects on copper-gold flotation[J]. Minerals Engineering, 2015, 77:121-130. doi: 10.1016/j.mineng.2015.03.010

    [32]

    Zhang M, Peng Y. Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals[J]. Minerals Engineering, 2015, 70:8-13. doi: 10.1016/j.mineng.2014.08.014

    [33]

    Mouzon J, Bhuiyan I U, Hedlund J. The structure of montmorillonite gels revealed by sequential cryo-XHR-SEM imaging[J]. Journal of Colloid & Interface Science, 2016, 465:58-66. doi: 10.1016/j.jcis.2015.11.031

    [34]

    王冉.黏土泥化抑制对煤泥浮选的影响[D].徐州:中国矿业大学,2015.

    [35]

    Wang Y, Peng Y, Nicholson T, et al. The different effects of bentonite and kaolin on copper flotation[J]. Applied clay Science, 2015, 114(sep.):48-52. doi: 10.1016/j.clay.2015.05.008

    [36]

    Farrokhpay S, Zanin M. An investigation into the effect of water quality on froth stability[J]. Advanced Powder Technology, 2012, 23(4):493-497. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88b08d21d55081c45933516a5821c5dd

    [37]

    于跃先.煤泥浮选颗粒间相互作用及对浮选影响研究[D].北京:中国矿业大学(北京),2018.

    [38]

    Kirjavainen V M. Application of a probability model for the entrainment of hydrophilic particles in froth flotation[J]. International Journal of Mineral Processing, 1989, 27(1-2):63-74. doi: 10.1016/0301-7516(89)90006-9

    [39]

    Holuszko M E, Franzidis J P, Manlapig E V, et al. The effect of surface treatment and slime coatings on ZnS hydrophobicity[J]. Minerals Engineering, 2008, 21(12-14):958-966. doi: 10.1016/j.mineng.2008.03.006

    [40]

    Liu D, Peng Y. Reducing the entrainment of clay minerals in flotation using tap and saline water[J]. Powder Technology, 2014, 253:216-222. doi: 10.1016/j.powtec.2013.11.019

    [41]

    Zhi-li Li, Feng Rao, Shao-xian Song, Yan-mei Li, Wen-biao Liu. Slime coating of kaolinite on chalcopyrite in saline water flotation[J]. International Journal of Minerals Metallurgy and Materials, 2018, (5):481-488. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb-e201805001

    [42]

    Warren L J. Determination of the contributions of true flotation and entrainment in batch flotation tests[J]. International Journal of Mineral Processing, 1985, 14(1):33-44. doi: 10.1016/0301-7516(85)90012-2

    [43]

    于跃先,马力强,张仲玲,等.煤泥浮选过程中的细泥夹带与罩盖机理[J]. 煤炭学报,2015(3):652-658. http://d.old.wanfangdata.com.cn/Periodical/mtxb201503025

    [44]

    Y·S·楚,周高云,雨田.浮选起泡剂对气泡大小和泡沫稳定性的影响[J].国外金属矿选矿,2002(9):17-21. http://d.old.wanfangdata.com.cn/Periodical/gwjskxk200209003

    [45]

    Farrokhpay S, Ndlovu B, Bradshaw D. Behaviour of swelling clays versus non-swelling clays in flotation[J]. Minerals Engineering, 2016, 96:59-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a104d774b11003124d2d551b54c9667b

    [46]

    Wang Y, Peng Y, Nicholson T, et al. The different effects of bentonite and kaolin on copper flotation[J]. Applied Clay Science, 2015, 114(sep.):48-52. doi: 10.1016/j.clay.2015.05.008

    [47]

    谢宝华.含镁硅酸盐矿物间相互作用及其对硫化矿浮选的影响研究[D].长沙:中南大学,2014.

    [48]

    Cruz N, Peng Y, Farrokhpay S, et al. Interactions of clay minerals in copper-gold flotation:Part 1-Rheological properties of clay mineral suspensions in the presence of flotation reagents[J]. Minerals Engineering, 2013, 50-51:30-37. doi: 10.1016/j.mineng.2013.06.003

    [49]

    向磊.浮选药剂浓度对不同粒径煤浮选效果的影响[D].重庆:重庆大学,2018.

    [50]

    Bulatovic S M. Handbook of Flotation Reagents:Chemistry, Theory and Practice Flotation of Sulfide Ores[J]. Chinese Journal of Chemical Engineering, 2008, 16(5):685-685. https://www.sciencedirect.com/book/9780444530837/handbook-of-flotation-reagents-chemistry-theory-and-practice

    [51]

    Farrokhpay S, Bradshaw D. Effect of clay minerals on froth stability in mineral flotation:a review[C]. IMPC. 2012.

    [52]

    Oats W J, Ozdemir O, Nguyen A V. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation[J]. Minerals Engineering, 2010, 23(5):413-419. doi: 10.1016/j.mineng.2009.12.002

    [53]

    唐敏,张文彬.微细粒蛇纹石矿泥在含铂钯铜镍硫化矿浮选中的影响[J].中国矿业,2008(4):66-69. doi: 10.3969/j.issn.1004-4051.2008.04.020

    [54]

    Bulatovic S M, Salter R S. High intensity conditioning-a new approach to improving flotation of mineral slimes[M]. Processing of Complex Ores. Pergamon, 1989:169-181.

    [55]

    Yu Y, Ma L, Wu L, et al. The role of surface cleaning in high intensity conditioning[J]. Powder Technology, 2017, 319:26-33. doi: 10.1016/j.powtec.2017.06.048

    [56]

    马力强,韦鲁滨,江兴华,等.调浆剪切强度对煤泥浮选的影响[J].煤炭学报,2013(1):140-144. http://d.old.wanfangdata.com.cn/Periodical/mtxb201301023

    [57]

    唐超.超声预处理对煤泥浮选过程的强化作用研究[D].徐州:中国矿业大学,2014.

    [58]

    Gurpinar G, Sonmez E, Bozkurt V. Effect of ultrasonic treatment on flotation of calcite, barite and quartz[J]. Mineral Processing & Extractive Metallurgy, 2004, 113(2):91-95. doi: 10.1179/037195504225005796

    [59]

    韩永华.高岭石、蒙脱石表面性质及其分散机理的量子化学研究[D].北京:中国矿业大学(北京),2017.

    [60]

    徐东方,朱书全,曹国强.煤泥浮选过程中六偏磷酸钠对蒙脱石分散行为影响[J]. 煤炭学报,2016,41(S1):192-198. http://d.old.wanfangdata.com.cn/Periodical/mtxb2016z1028

    [61]

    方启学.钙镁对微细矿粒分散稳定性的影响及其机理研究[J].国外金属矿选矿,1998(6):42-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800327618

    [62]

    李亚峰,金亚斌,刘元.Ca~(2+)等3种成分在煤泥凝聚中作用机理的研究[J].沈阳建筑大学学报:自然科学版,2007(3):473-477. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syjzgcxyxb200703027

    [63]

    Klassen, V.I., Mokrousov, V.A. An introduction to the theory of flotation, second ed[M]. Butterworths, London, 1963.

    [64]

    Wang Yanhong. Mitigating the deleterious effect of clay minerals on copper flotation[D]. Queensland:The University of Queensland, 2016.

    [65]

    中华人民共和国水利部.2017年度中国水资源公报[M].北京:中国水利水电出版社,2018.

    [66]

    闫善郁,王洪德.矿山废水控制与处理[J].煤矿安全,2005(7):27-29. doi: 10.3969/j.issn.1003-496X.2005.07.010

    [67]

    阎文庆,朱日来.苦咸水、海水在国内外矿业中的应用[J].中国矿业,2016,(10):81-87,113. doi: 10.3969/j.issn.1004-4051.2016.10.017

    [68]

    Drelich J, Miller J D. Induction time measurements for air bubbles on chalcopyrite, bornite, and gold in seawater[C]. Water in Mineral Processing, 2012.

    [69]

    Lagaly G, Ziesmer S. Colloid chemistry of clay minerals:the coagulation of montmorillonite dispersions[J]. Advances in Colloid & Interface Science, 2003, 100(2):105-128. https://www.sciencedirect.com/science/article/pii/S0001868602000647

    [70]

    刘佳.金属阳离子对水溶液中蒙脱石膨胀性和凝聚的影响[D].武汉:武汉理工大学,2016.

    [71]

    翟永功,次向明,邹星,等.药用蒙脱石黏土的矿物组成与化学成分分析[J].中草药,2002(4):5-7. http://www.cnki.com.cn/Article/CJFDTotal-ZCYO200204001.htm

    [72]

    孙红娟,彭同江,陈彦翠.层间阳离子对蒙脱石结构与水化膨胀性能的影响[J].非金属矿,2011(1):11-13. doi: 10.3969/j.issn.1000-8098.2011.01.004

    [73]

    Zhang M, Peng Y, Xu N. The effect of sea water on copper and gold flotation in the presence of bentonite[J]. Minerals Engineering, 2015, 77:93-98. doi: 10.1016/j.mineng.2015.03.006

    [74]

    Marrucci G, Nicodemo L. Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes[J]. Chemical Engineering Science, 1967, 22(9):1257-1265. doi: 10.1016/0009-2509(67)80190-8

    [75]

    K.C. Corin, A. Reddy, L. Miyen. The effect of ionic strength of plant water on valuable mineral and gangue recovery in a platinum bearing ore from the Merensky reef[J]. Minerals Engineering, 2011, 24(2):131-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664453db3d76250ef4a24a95fc0bbdba

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1903
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2020-03-02
刊出日期:  2020-04-25

目录