-
摘要:
黄铁矿资源储量大,共伴生有色金属价值高,在当下资源紧张和环境压力严峻的态势下,其高效清洁利用技术的开发意义重大。目前选矿界对含黄铁矿的有色金属硫化矿的浮选分离工艺主要是抑制黄铁矿,先回收其它有用金属矿物,随后再活化捕收黄铁矿。但是受黄铁矿晶体缺陷、化学成分差异等因素的影响,加之浮选体系的多样化和复杂化,浮选实践中常常出现黄铁矿与其他硫化矿物分离效果不理想,再活化效果不佳等问题。本文综合了国内外关于黄铁矿晶体微观物理化学结构、抑制剂及其抑制机理、活化剂及其活化机理方面的研究现状,对黄铁矿资源的综合利用具有一定的参考价值。
Abstract:Pyrite ore has large reserves of resources and contains high valuable associated nonferrous metals. Under the current situation of resource shortage and severe environmental pressure, it is of great significance to develop efficient and clean utilization technology. At present, the main process of flotation of nonferrous metal sulfide ores containing pyrite is to first recover other useful metal minerals with the inhibition of pyrite, and then activate and collect pyrite. However, due to the crystal defects and the difference in the chemical composition of pyrite and the diversity and complexity of the flotation system, there are some unsatisfactory shortcomings of re-activation and separation between pyrite with other minerals. In this paper, the research status and frontier of the microscopic physical and chemical structure of pyrite crystals, depressant and its mechanism, activator and its mechanism on pyrite at home and abroad were summarized. It has certain reference values for the comprehensive utilization of pyrite resources.
-
Key words:
- pyrite /
- flotation /
- inhibition /
- activation
-
[1] 文书明.有色金属共伴生硫铁矿资源综合利用关键技术及应用[J].中国科技成果, 2017, 18(3):59. http://d.old.wanfangdata.com.cn/Periodical/zgkjcg201703028
[2] 先永骏.黄铁矿晶体缺陷及其表面吸附特性的研究[D].昆明: 昆明理工大学, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-10674-1015641665.htm [3] 宋国君, 邓久帅, 先永骏, 等.黄铁矿解抑活化机理研究现状及进展[J].矿物学报.2017:328-332. http://d.old.wanfangdata.com.cn/Periodical/kwxb201703010
[4] 王瑜, 刘建, 罗德强, 等.巯基乙酸和巯基乙醇对黄铁矿抑制作用DFT计算[J].昆明理工大学学报(自然科学版), 2018, 43(2):39-44. http://www.cnki.com.cn/Article/CJFDTotal-KMLG201802007.htm
[5] 王丰雨, 赵明, 钟森林, 等.某硫铁矿浮选试验研究[J].化工矿物与加工, 2016(2):16-18. http://d.old.wanfangdata.com.cn/Periodical/hgkwyjg200908001
[6] 黄巧琼.浅谈黄铁矿浮选现状研究[J].化学工程与装备, 2013(1):151-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjhg201301052
[7] 孙伟, 张英, 覃武林, 等.被石灰抑制的黄铁矿的活化浮选机理[J].中南大学学报(自然科学版), 2010, 41(3):813-818. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201003002
[8] Mu Y, Peng Y, Lauten RA. The depression of pyrite in selective flotation by different reagent systems - A Literature review[J]. Minerals Engineering, 2016, 96-97, 143-156. doi: 10.1016/j.mineng.2016.06.018
[9] 张跃, 唐明林, 扬守明, 等.我国硫铁矿资源开发利用现状和进展[J].硅酸盐通报, 2013, 32(5):895-897. http://d.old.wanfangdata.com.cn/Periodical/gsytb201305024
[10] CHANDRA A P, GERSON A R. The mechanisms of pyrite oxidation and leaching: A fundamental perspective[J]. Surface Science Reports, 2010, 65(9): 293-315. doi: 10.1016/j.surfrep.2010.08.003
[11] 任海兵.对我国硫铁矿资源开发及利用的思考[J].中国矿业, 2010, 19(3):36-39. doi: 10.3969/j.issn.1004-4051.2010.03.012
[12] 刘润清, 孙伟, 胡岳华, 等.巯基类小分子有机抑制剂对复杂硫化矿物浮选行为的抑制机理[J].中国有色金属学报, 2006, 16(4):746-751. doi: 10.3321/j.issn:1004-0609.2006.04.030
[13] Gu GH, Hu YH, Wang H, et al. Original potential flotation of galena and its industrial application[J]. Journal of Central South University of Technology, 2002, 9(2): 91-94. doi: 10.1007/s11771-002-0049-4
[14] Klimpel RR. Optimizing the industrial flotation performance of sulfide minerals having some natural floatability[J]. International Journal of Mineral Processing, 2000, 58(1): 77-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd2563383df2af00bdfe7dc500e8cbad
[15] 李玉琼, 陈建华, 陈晔, 等.黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J].中国有色金属学报, 2011, 21(4):919-926. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201104031
[16] 黄有成, 赵礼兵, 代淑娟.黄铁矿浮选抑制剂研究现状[J].有色矿冶, 2011, 27(3):24-29. doi: 10.3969/j.issn.1007-967X.2011.03.007
[17] 郭锐, 刘丹, 郭志强, 等.从铜尾矿中回收铋金属选矿试验[J].矿冶, 2018, 27(3):13-7, 27. http://d.old.wanfangdata.com.cn/Periodical/ky201803003
[18] 罗仙平, 邱廷省, 方夕辉, 等.黄铁矿低碱介质高效有机抑制剂的选择及其机理研究[J].江西科学, 2001, 19(2):79-83. doi: 10.3969/j.issn.1001-3679.2001.02.004
[19] 孙伟, 刘润清, 胡岳华.有机抑制剂DMPS对脆硫锑铅矿和磁黄铁矿抑制作用的研究[J].矿冶工程, 2005, 25(6):31-34. doi: 10.3969/j.issn.0253-6099.2005.06.008
[20] 余新阳, 周源, 钟宏.低碱度铜硫分离抑制剂及抑制机理的研究[J].金属矿山, 2008, 38(9):65-67. doi: 10.3321/j.issn:1001-1250.2008.09.019
[21] 彭建城, 熊道陵, 马智敏, 等.有机抑制剂在浮选中抑制黄铁矿的研究进展[J].有色金属科学与工程, 2012, 3(2):61-65. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201202014
[22] 魏存北.辽宁五龙金矿黄铁矿标型特征[J].地质找矿论丛, 2001, 16(2): 135-139. doi: 10.3969/j.issn.1001-1412.2001.02.012
[23] 何铸文, 杨忆.黄铁矿型结构的晶体化学[J].矿物学报, 1996(4):423-430. doi: 10.3321/j.issn:1000-4734.1996.04.015
[24] Wu R, Zheng YF, Zhang XG, et al. Hydrothermal synthesis and crystal structure of pyrite[J]. Journal of Crystal Growth, 2004, 266(4): 523-527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6399799aca595700f51efc3ebe6c9bdf
[25] 欧阳素勤, 银星宇.硫铁矿选矿研究现状[J].矿产保护与利用, 2011(z1): 102-107. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8d84086e-7317-4f25-91f1-eab5538d5853
[26] Boulton A, Fornasiero D, Ralston J. Effect of iron content in sphalerite on flotation[J]. Minerals Engineering, 2005, 18(11): 1120-1122. doi: 10.1016/j.mineng.2005.03.008
[27] 于宏东, 孙传尧.不同成因类型黄铁矿的浮游特性[J].有色金属工程, 2009, 61(3):111-115. doi: 10.3969/j.issn.2095-1744.2009.03.028
[28] 陈述文, 胡熙庚.黄铁矿的温差电动势率与可浮性关系[J].矿冶工程, 1990, 10(3):17-21. http://www.cqvip.com/Main/Detail.aspx?id=315304
[29] 凌竞宏, 胡熙庚.黄铁矿的半导体性质与可浮性的关系[J].中南矿冶学院学报, 1988(1):14-21. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD198801001.htm
[30] 赖亚, 何伯泉.泡沫浮选表面化学[M].北京:冶金工业出版社, 1987.
[31] 王淀佐, 胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社, 1988.
[32] Lehner, SW, Savage, et al. Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni and As : Variations in semiconducting properties[J]. Journal of Crystal Growth, 2006, 286(2): 306-317. https://ui.adsabs.harvard.edu/abs/2006JCrGr.286..306L/abstract
[33] Savage KS, Stefan D, Lehner SW. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products[J]. Applied Geochemistry, 2008, 23(2): 103-120. https://ui.adsabs.harvard.edu/abs/2008ApGC...23..103S/abstract
[34] Lehner S, Savage K, Ciobanu M, et al. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite[J]. Geochimica Et Cosmochimica Acta, 2007, 71(10): 2491-2509. doi: 10.1016/j.gca.2007.03.005
[35] 李玉琼, 陈建华, 陈晔.空位缺陷黄铁矿的电子结构及其浮选行为[J].物理化学学报, 2010, 26(5):1435-1441. doi: 10.3866/PKU.WHXB20100332
[36] 陈建华.硫化矿物浮选晶格缺陷理论[M].长沙:中南大学, 2012.
[37] Xian YJ, Wen SM, Chen XM, et al. Effect of lattice defects on the electronic structures and floatability of pyrites[J]. International Journal of Minerals Metallurgy & Materials, 2012, 19(12): 1069-1076. https://www.researchgate.net/publication/257791362_Effect_of_lattice_defects_on_the_electronic_structures_and_floatability_of_pyrites
[38] Li Yuqiong, Chen JH, Ye C. Density functional theory study of influence of impurity on electronic properties and reactivity of pyrite[J]. Transactions of Nonferrous Metal s Society of China, 2011, 21(8): 1887-1895. doi: 10.1016/S1003-6326(11)60946-1
[39] Qi X, Zhang H, Li Y, et al. Density functional theory study of the structure and properties of C-doped pyrite[J]. Physica B: Condensed Matter, 2019, 572: 168-174. doi: 10.1016/j.physb.2019.05.020
[40] Xian Yongjun, Wen SM, Liu J, et al. Discovery of a new source of unavoidable ions in pyrite aqueous solutions[J]. Minerals & Metallurgical Processing, 2013, 30(2): 117-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b29ff59f935a451f815e386b1d9970a
[41] Xian Yongjun, Nie Q, Wen SM, et al. Contribution of components from volume defect in natural pyrite and quartz to solution chemistry of flotation pulp[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3119-3125. doi: 10.1016/S1003-6326(15)63941-3
[42] Xian Yongjun, Wen SM, Bai S, et al. Metal ions released from fluid inclusions of quartz associated with sulfides[J]. Minerals Engineering, 2013, 50-51: 1-3. doi: 10.1016/j.mineng.2013.05.025
[43] Xian Yongjun, Wang YJ, Wen SM, et al. Floatability and oxidation of pyrite with different spatial symmetry[J]. Minerals Engineering, 2015, 72: 94-100. doi: 10.1016/j.mineng.2014.12.016
[44] 孙志健, 程新朝.新型捕收剂BK-330优先浮选黄铜矿的研究[J].矿冶, 2007, 16(2):5-8. http://d.old.wanfangdata.com.cn/Periodical/ky200702002
[45] Valdivieso AL, Cervantes TC, Song S, et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector [J]. Minerals Engineering, 2004, 17(9): 1001-1006. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96cc76291939126d0539f1a33b841c9e
[46] 唐宇, 赵博.浅析黄铁矿的可浮性及抑制活化机理[J].城市建设理论研究, 2015(29):646-647. http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2015290424
[47] Khoso SA, Hu Y, Liu R, et al. Selective depression of pyrite with a novel functionally modified biopolymer in a Cu-Fe flotation system[J]. Minerals Engineering, 2019, 135: 55-63. doi: 10.1016/j.mineng.2019.02.044
[48] Sarqu SPE, Men Ndezaguado JM, Mahamud MM, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84(1): 723-726. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230316411/
[49] Ahmadi M, Gharabaghi M, Abdollahi H. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system[J]. Advanced Powder Technology, 2018, 29(12): 3155-3162. doi: 10.1016/j.apt.2018.08.015
[50] Majumdar S, Singh S, Sahoo PR, et al. Trace-element systematics of pyrite and its implications for refractory gold mineralisation within the carbonaceous metasedimentary units of Palaeoproterozoic South Purulia shear zone, eastern India [J]. Journal of Earth System Science, 2019, 128(8): 151-152. https://www.researchgate.net/publication/335526197_Trace-element_systematics_of_pyrite_and_its_implications_for_refractory_gold_mineralisation_within_the_carbonaceous_metasedimentary_units_of_Palaeoproterozoic_South_Purulia_shear_zone_eastern_India?_sg=ekNEx73XaP_fb_k0y-FwjqA-bxEhRUR5hFS9LsloSKqPePH8ykUR2c3_PU1TCu7FHSUTw0Dm3G9X-Ws
[51] 梁海军, 魏德洲.氧化亚铁硫杆菌抑制黄铁矿可浮性作用机理[J].东北大学学报(自然科学版), 2009, 30(10):1493-1496. http://d.old.wanfangdata.com.cn/Periodical/dbdxxb200910032
[52] Buswell, AM, Bradshaw, et al. The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore[J]. Minerals Engineering, 2002, 15(6): 395-404. doi: 10.1016/S0892-6875(02)00061-4
[53] Woods R. Electrochemical potential controlling flotation [J]. International Journal of Mineral Processing, 2003, 72(1): 151-162. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025938055/
[54] 胡岳华, 王淀佐.石灰抑制的黄铁矿的活化及活化剂结构——性能[J].有色金属工程, 1996, 48(4):24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199601043739
[55] Li WZ, Qin WQ, Sun W, et al. Electrodeposition of dixanthogen(TETD) on pyrite surface[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 154-158. doi: 10.1016/S1003-6326(07)60065-X
[56] 杨梅金, 陈建华, 马少健, 等.黄铁矿电化学浮选研究[J].广西大学学报(自然科学版), 2002, 27(4):281-283. doi: 10.3969/j.issn.1001-7445.2002.04.003
[57] Bai S, Yu P, Li C, et al. Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: Experiment, visual MINTEQ models, XPS, and ToF-SIMS studies [J]. Minerals Engineering, 2019, 141: 105853. doi: 10.1016/j.mineng.2019.105853
[58] Yin W, Yang B, Fu Y, et al. Effect of calcium hypochlorite on flotation separation of covellite and pyrite [J]. Powder Technology, 2019, 343: 578-585. doi: 10.1016/j.powtec.2018.11.048
[59] Mu Y, Peng Y. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water[J]. Minerals Engineering, 2019, 142: 105921. doi: 10.1016/j.mineng.2019.105921
[60] He S, Skinner W, Fornasiero D. Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite[J]. International Journal of Mineral Processing, 2006, 80(2): 169-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8d592b8f45c2df2a9e6defa29d2e2b4
[61] 刘智林, 许方.低碱度下组合抑制剂对易浮黄铁矿的抑制机理研究[J].矿冶工程, 2005, 25(5):33-35. doi: 10.3969/j.issn.0253-6099.2005.05.010
[62] 周源, 刘亮, 曾娟.低碱度下组合抑制剂对黄铜矿和黄铁矿可浮性的影响[J].金属矿山, 2009(6):69-72. doi: 10.3321/j.issn:1001-1250.2009.06.020
[63] 韩英梅.腐殖酸钠在铜硫矿石浮选中的作用机理[J].武汉科技大学学报自然科学版, 2002, 25(4):342-344. http://d.old.wanfangdata.com.cn/Periodical/whkjdxxb200204005
[64] 秦大梅.黄铜矿与黄铁矿、毒砂的浮选分离研究[D].长沙: 中南大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10533-1014401516.htm [65] Bulut G, Ceylan A, Soylu B, et al. Role of Starch and Metabisuphite on Pure Pyrite and Pyritic Copper Ore Flotation[J]. Physicochemical Problems of Mineral Processing, 2012, 48(1): 261902-92104. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BAT2-0003-0057
[66] Khoso SA, Hu Y, Lyu F, et al. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant[J]. Journal of Cleaner Production, 2019, 232: 888-897. doi: 10.1016/j.jclepro.2019.06.008
[67] Huang P, Cao M, Liu Q. Selective depression of pyrite with chitosan in Pb-Fe sulfide flotation[J]. Minerals Engineering, 2013, 46-47: 45-51. doi: 10.1016/j.mineng.2013.03.027
[68] 邱仙辉, 孙传尧, 邱廷省.鞣酸对方铅矿及黄铁矿的抑制作用[J].东北大学学报(自然科学版), 2015, 36(1):124-128. doi: 10.3969/j.issn.1005-3026.2015.01.027
[69] Mu Y, Peng Y, Lauten RA. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant[J]. Electrochimica Acta, 2015, 174: 133-142. doi: 10.1016/j.electacta.2015.05.150
[70] Mu Y, Peng Y, Lauten RA. The depression of copper-activated pyrite in flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96-97:113-122. doi: 10.1016/j.mineng.2016.06.011
[71] Wang Z, Qian Y, Xu LH, et al. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant [J]. Minerals Engineering, 2015, 74: 86-90. doi: 10.1016/j.mineng.2015.01.008
[72] Agorhom EA, Skinner W, Zanin M. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate [J]. Minerals Engineering, 2014, 57: 36-42. doi: 10.1016/j.mineng.2013.12.010
[73] 陈建华, 冯其明.有机抑制剂CTP与黄铁矿、黄铜矿的作用机理[J].中国有色金属学报, 1998(1):122-125. doi: 10.3321/j.issn:1004-0609.1998.01.026
[74] 徐竞, 孙伟, 张芹, 等.新型有机抑制剂RC对黄铁矿和磁黄铁矿的抑制作用研究[J].矿冶工程, 2003, 23(6):27-29. doi: 10.3969/j.issn.0253-6099.2003.06.009
[75] 张新海, 李勇, 马荣锴, 等.某螯合捕收剂协同有机盐抑制剂浮选国外某高硫铜矿[J].矿产保护与利用, 2019(4):135-139. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7df7a998-d807-4a60-af3a-91eb6f905fb2
[76] Chen J, Li Y, Chen Y. Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium[J]. Minerals Engineering, 2011, 24(1) :58-63. https://www.sciencedirect.com/science/article/abs/pii/S0892687510002633
[77] 何桂春, 吴艺鹏, 冯金妮, 等.高碱高钙受抑黄铁矿活化剂的研究现状[J].有色金属科学与工程, 2012, 3(2):37-40. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201202009
[78] Jianhua C, Qiming F, Yiping L. Prediction of edge energy level at mineral-solution interface by means of zeta potential[J]. Transactions of Nonferrous Metals Society of China, 2000, (s1): 93-96. http://www.cnki.com.cn/Article/CJFDTotal-ZYSY2000S1020.htm
[79] 尹启华, 冯其明.高碱高钙介质中黄铁矿活化机理的研究[J].有色金属(选矿部分), 1997(3):18-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700886236
[80] 于传兵, 王中明, 吴熙群, 等.铜硫分离尾矿中黄铁矿活化的研究[C]//有色金属工业科技创新——中国有色金属学会第七届学术年会论文集.2008.
http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYY200810001036.htm [81] Huang H, Hu Y, Sun W. Activation flotation and mechanism of lime-depressed pyrite with oxalic acid [J]. International Journal of Mining Science and Technology, 2012, 22(1): 63-67. doi: 10.1016/j.ijmst.2011.07.007
[82] 王李鹏.高碱高钙受抑黄铁矿浮选活化剂的性能研究[J].化工矿物与加工, 2013(4):12-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkwyjg201304005
[83] 覃武林.高碱抑制硫铁矿及活化浮选机理研究[D].长沙: 中南大学, 2009.
http://d.wanfangdata.com.cn/thesis/Y1535051 [84] 黄尔君, 冯育武.铵盐对黄铁矿的活化作用及其机理研究[J].有色金属(选矿部分), 1996(2):33-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600847828
[85] 王李鹏.高碱高钙受抑黄铁矿和毒砂浮选分离的活化行为研究[D].赣州: 江西理工大学, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10407-1012393209.htm [86] 易运来, 刘忠荣, 殷志刚.高碱高钙介质黄铁矿抑制及铵盐活化机理的现状与展望[J].湖南有色金属, 2011, 27(4):10-3, 47. doi: 10.3969/j.issn.1003-5540.2011.04.004
[87] Ejtemaei M, Nguyen AV. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate [J]. Minerals Engineering, 2017, 100: 223-232. doi: 10.1016/j.mineng.2016.11.005
[88] 穆晓辉, 李娟, 王德海, 等.活化剂ZM-2的研究及应用[J].中国有色冶金, 2004, 33(4):72-73. doi: 10.3969/j.issn.1672-6103.2004.04.023
[89] 于传兵, 吴熙群, 王中明, 等.强碱性矿浆中黄铁矿的活化方法: CN101338366 [P/OL].2008-08-22.
http://d.wanfangdata.com.cn/patent/CN200810118796.5