-
摘要: 黄铁矿与黄铜矿、闪锌矿和方铅矿等矿物广泛共伴生。由于黄铁矿具有较好的天然可浮性,且常被铜离子和铅离子活化,容易混入其他精矿产品中,进而影响产品质量。因此需要使用抑制剂对多金属硫化矿中的黄铁矿进行选择性抑制,从而实现硫化矿资源的高效利用。本文介绍了多金属硫化矿中黄铁矿的抑制剂研究进展,从生产成本与绿色环保要求方面考虑,组合抑制剂的使用是黄铁矿浮选领域中重要的发展趋势之一。Abstract: Pyrite is widely associated with chalcopyrite, sphalerite, galena and other minerals. The pyrite is easily subjected to mix into other concentrate products, resulting in a decrease in concentrate quality. This is because the pyrite has good natural floatability, and it also can be activated by copper and lead ions. Therefore, it is necessary to use depressant to selectively inhibit pyrite during the flotation separation of polymetallic sulphide ore to complete the efficient utilization of resources. In this paper, the depressant progress of the pyrite flotation in recent years was reviewed. Considering the production cost and green environmental protection requirements, the use of the combined depressant is one of the important development trends in the pyrite flotation.
-
Key words:
- pyrite /
- flotation /
- depressants /
- polymetallic sulphide ore
-
图 1 羧甲基纤维素的结构[40]
Figure 1.
图 2 魔芋葡甘露聚糖的结构[46]
Figure 2.
图 3 壳聚糖的结构[51]
Figure 3.
图 4 改性木质素磺酸盐的结构[52]
Figure 4.
图 5 DETA与Cu2+以1:1摩尔比形成的配合物的示意图[60]
Figure 5.
图 6 甘油黄原酸钠的结构[61]
Figure 6.
-
[1] 胡熙庚, 等.有色金属硫化矿选矿[M].北京:冶金工业出版社, 1987.
[2] CHENG H F, LIU Q F, HUANG M, et al, Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite[J]. Thermochim Acta, 2013, 555: 1-6. doi: 10.1016/j.tca.2012.12.025
[3] 赵珊茸.结晶学及矿物学[M].北京:高等教育出版社, 2004.
[4] 何铸文, 杨忆.黄铁矿型结构的晶体化学[J].矿物学报, 1996(4):423-430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600333008
[5] 王淀佐, 龙翔云, 孙水裕.硫化矿的氧化与浮选机理的量子化学研究[J].中国有色金属学报, 1991, 1(1):15-23. http://www.cqvip.com/Main/Detail.aspx?id=675263
[6] 杨升旺, 李江丽, 李佳磊, 等.矿物学因素对黄铁矿浮选行为影响的研究进展[J].有色金属(选矿部分), 2019(6):12-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk201906003
[7] 姜凯, 刘杰, 韩跃新, 等.自然氧化对黄铁矿可浮性的影响及其机理研究[J].金属矿山, 2019(2):111-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201902023
[8] LEPPINEN, JO. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30 (3-4): 245-263. doi: 10.1016/0301-7516(90)90018-T
[9] WARK, IW, COX AB. Principles of flotation, I An experimental study of the effect of xanthates on contact at mineral surfaces[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1934, 48: 189-244. http://www.mendeley.com/research/principles-flotation-i-experimental-study-effect-xanthates-contact-angles-mineral-surfaces/
[10] 于宏东, 孙传尧.不同成因类型黄铁矿的浮游特性[J].有色金属, 2009, 61(3):111-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs200903028
[11] 石原透.黄铁矿选矿的相关研究[J].日本矿业会志, 1967, 83(947):532-534. http://ci.nii.ac.jp/naid/10022572542
[12] 金泉常正.晶格缺陷对黄铁矿浮选特性的影响[J].日本矿业会志, 1970, 86(992):853-858.
[13] 原田种臣.性状不同的黄铁矿可浮性差异比较[J].日本矿业会志, 1967, 83(949):749-753.
[14] 陈建华, 钟建莲, 李玉琼, 等.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报, 2011, 21(7):1719-1727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb201107031
[15] 凌竞宏, 胡熙庚, 吴亨魁.三种不同类型矿床黄铁矿浮选行为的比较[J].中南矿冶学院学报, 1982(4):62-69. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD198204008.htm
[16] 陈述文, 胡熙庚.黄铁矿化学组成不均匀性与可浮性关系[J].湖南有色金属, 1991(5):278-283. http://www.cqvip.com/QK/83200X/199105/4001595226.html
[17] 姜毛, 张覃, 李龙江.杂质对黄铁矿电子性质及可浮性影响的密度泛函理论研究[J].矿物学报, 2014, 34(4):528-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201404013
[18] 胡岳华, 章顺力, 邱冠周, 等.石灰抑制黄铁矿的活化机理研究[J].中南工业大学学报, 1995(2):176-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500666439
[19] 苏超, 申培伦, 李佳磊, 等.黄铁矿浮选的抑制与解抑活化研究进展[J].化工进展, 2019, 38(4):1921-1929. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201904038
[20] Bao Guo, Yongjun Peng, Rodolfo Espinosa-Gomez. Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite[J]. Minerals Engineering, 2015, 71: 194-204. doi: 10.1016/j.mineng.2014.11.016
[21] 黄有成, 赵礼兵, 代淑娟.黄铁矿浮选抑制剂研究现状[J].有色矿冶, 2011, 27(3):24-29, 37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysky201103007
[22] MU Y F, PENG Y J. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water[J]. Minerals Engineering, 2019, 142: 105921. doi: 10.1016/j.mineng.2019.105921
[23] OLSEN, C, MAKNI S, HART B, et al. Application of surface chemical analysis to the industrial flotation process of a complex sulphide ore[C]. In: XXVI International Mineral Processing Congress, IMPC 2012, New Delhi, India.
[24] 梁溢强, 刘鹏, 宋涛, 等.低碱度下高硫铅锌矿的无钙浮选分离工艺研究[J].有色金属(选矿部分), 2019(5):71-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk201905013
[25] JANETSKI ND, WOODBURN SL, WOODS R. An electrochemical investigation of pyrite flotation and depression[J]. International Journal of Mineral Processing, 1977, 4(3): 227-239. doi: 10.1016/0301-7516(77)90004-7
[26] LI J, MILLER JD, WANG RY. The ammoniacal thiosulfate system for precious metal recovery[C]. In: Proceedings XIX International Mineral Processing Congress, SME, Littleton, Colorado, USA, 1995, pp: 37-42.
[27] KHMELEVA TN, SKINNER W, BEATTIE DA. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite[J]. International Journal of Mineral Processing, 2005, 76 (1-2): 43-53. doi: 10.1016/j.minpro.2004.10.001
[28] KHMELEVA TN, CHAPELET JK, SKINNER WM, ea tl. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite[J]. International Journal of Mineral Processing, 2006, 79(1): 61-75. doi: 10.1016/j.minpro.2005.12.001
[29] D VILA-PULIDO GI, URIBE-SALAS A, ESPINOSA-G MEZ, R. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite[J]. International Journal of Mineral Processing, 2011, 101 (1-4): 71-74. doi: 10.1016/j.minpro.2011.07.012
[30] BULUT G, CEYLAN A, SOYLU B, et al. Role of starch and metabisulphite on pure pyrite and pyritic copper ore flotation[J]. Physiochemical Problems of Mineral Processing, 2011, 48(1): 39-48. http://www.researchgate.net/publication/268383560_ROLE_OF_STARCH_AND_METABISUPHITE_ON_PURE_PYRITE_AND_PYRITIC_COPPER_ORE_FLOTATION
[31] 周源, 余新阳.无机氧化剂对黄铁矿和黄铜矿可浮性的影响[J].金属矿山, 2005(2):33-35, 41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks200502010
[32] M·C·杰沃娅, 崔洪山, 肖力子.有色金属矿石浮选过程中的高锰酸钾法[J].国外金属矿选矿, 2006(2):21, 37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwjskxk200602005
[33] 邱廷省, 方夕辉, 钟常明.几种黄铁矿抑制剂的抑制性能比较[J].矿产综合利用, 2005(3):6-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly200503002
[34] BAI S J, PAN Y, LI C L, et al. Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: Experiment, visual MINTEQ models, XPS, and ToF-SIMS studies [J]. Minerals Engineering, 2019, 14:1-10.
[35] OWUSU C, ADDAI-MENSAH J, FORNASIERO D, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behavior[J]. Advanced Powder Technology, 2013, 24(4): 801-809. http://www.sciencedirect.com/science/article/pii/S0921883113001210
[36] BOULTON A, FORNASIERO D, RALSTON J. Depression of iron sulphide flotation in zinc roughers[J]. Minerals Engineering, 2001, 14(9): 1067-1079. doi: 10.1016/S0892-6875(01)00112-1
[37] HE S, SKINNER W, FORNASIERO D. Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite[J]. International Journal of Mineral Processing, 2006, 80(2-4): 169-176. doi: 10.1016/j.minpro.2006.03.009
[38] BICAK O, EKMEKCI Z, BRADSHAW DJ, et al. Adsorption of guar gum and CMC on pyrite[J]. Minerals Engineering, 2007, 20 (10): 996-1002. doi: 10.1016/j.mineng.2007.03.002
[39] FENG B, FENG Q, LU Y, et al. The effect of PAX/CMC addition order on chlorite/pyrite separation[J]. Minerals Engineering, 2013, 42: 9-12. doi: 10.1016/j.mineng.2012.10.011
[40] LASKOWSK JS, LIU Q, O'CONNOR CT. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84 (1-4): 59-68. doi: 10.1016/j.minpro.2007.03.006
[41] 朱贤文, 冯博, 彭金秀, 等.以羟乙基纤维素为抑制剂浮选分离铜硫[J].金属矿山, 2017(7):97-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201707020
[42] LÓ PEZ VALDIVIESO A, CELEDN CERVANTES T, SONG S, et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector[J]. Minerals Engineering, 2004, 17 (9-10): 1001-1006. doi: 10.1016/j.mineng.2004.04.003
[43] LIU Q, ZHANG Y, LASKOWSKI JS. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60 (3-4): 229- 245. doi: 10.1016/S0301-7516(00)00018-1
[44] HAN G, WEN S M, WANG H, et al. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity[J]. Minerals Engineering, 2019, 143: 106015. doi: 10.1016/j.mineng.2019.106015
[45] A·L·瓦尔帝维叶索, 崔洪山, 林森.在黄药作捕收剂浮选时用糊精作为黄铁矿的无毒抑制剂的研究[J].国外金属矿选矿, 2004(11):29-32, 28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwjskxk200411007
[46] LIU D Z, ZHANG G F, CHEN Y F, et al. Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite[J]. Minerals Engineering, 2020, 145: 106098. doi: 10.1016/j.mineng.2019.106098
[47] SULTAN AHMED KHOSO, HU Y H, LYU F, et al. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant[J]. Journal of Cleaner Production, 2019, 232: 888-897. doi: 10.1016/j.jclepro.2019.06.008
[48] HAN G, WEN SM, WANG H, et al. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism[J]. Journal of Molecular Liquids, 2019, 296: 111774. doi: 10.1016/j.molliq.2019.111774
[49] 易翀, 熊道陵.乳酸黄原酸钠合成及其对黄铁矿与黄铜矿抑制的作用机理[J].有色金属科学与工程, 2018, 9(2):81-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201802014
[50] 邱仙辉, 于洋, 张春菊.鞣酸体系下黄铜矿与黄铁矿浮选动力学分析[J].化工进展, 2016, 35(7):2258-2262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201607051
[51] HUANG P, CAO M, LIU Q. Selective depression of pyrite with chitosan in Pb-Fe sulfide flotation[J]. Minerals Engineering, 2013, 46-47: 45-51. doi: 10.1016/j.mineng.2013.03.027
[52] OUYANG X, QIU X, CHEN P. Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283: 489-497. https://www.sciencedirect.com/science/article/pii/S0927775705009763
[53] MU YF, PENG Y J, ROLF A LAUTEN. The flotation of pyrite and chalcopyrite in the presence of biopolymers[C]. In: Yianatos, J. (Ed.), Juan Yianatos, Proceedings of the XXVII International Mineral Processing Congress: Impc 2014. Gecamin Publications, Santiago, Chile, 2014: 132-142.
[54] MU YF, PENG Y J, ROLF A LAUTEN. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant[J]. Electrochimica Acta, 2015, 174: 133-142. doi: 10.1016/j.electacta.2015.05.150
[55] MU YF, PENG Y J, ROLF A LAUTEN. The depression of copper-activated pyrite in the flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96-97: 113-122. doi: 10.1016/j.mineng.2016.06.011
[56] RASHCHI F, FINCH JA, SUI C. Action of DETA, dextrin and carbonate on lead -contaminated sphalerite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 245 (1-3): 21-27.
[57] AGORHOM EA, SKINNER W, ZANIN M. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate[J]. Minerals Engineering, 2014, 57: 36-42. doi: 10.1016/j.mineng.2013.12.010
[58] XU ZH, RAO SR, FINCH JA, KELEBEK S, WELLS P. Role of diethylene triamine (DETA) in pentlandite-pyrrhotite separation - Part 1: complexation of metals with DETA. Transactions - Institution of Mining and Metallurgy[J]. Section C. Mineral processing & extractive metallurgy, 1997(106): 15-20.
[59] SUI C, FINCH JA, XU Z. Effect of diethylenetriamine on xanthane interaction with Pb-contaminated pyrite[J]. Minerals Engineering, 1998, 11(7): 639-649. doi: 10.1016/S0892-6875(98)00048-X
[60] KELEBEK S, TUKEL C. The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation[J]. International Journal of Mineral Processing, 1999, 57(2): 135-152. doi: 10.1016/S0301-7516(99)00012-5
[61] WANG Z, QIAN YL, XU LH, et al. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant[J]. Minerals Engineering, 2015, 74: 86-90. doi: 10.1016/j.mineng.2015.01.008
[62] 郭蔚, 彭金秀, 冯博, 等.刺槐豆胶在铜硫分离中的抑制作用及机理分析[J].矿产保护与利用, 2018(1):76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201801013
[63] 徐会华, 蔡振波, 林榜立.新型有机抑制剂在铜硫分离试验中的应用[J].现代矿业, 2016, 32(11):68-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201611026
[64] 甘恒, 陈建华.自然pH值下铜硫分离试验[J].现代矿业, 2016, 32(11):71-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201611028
[65] 陶坤, 魏明安.新型铜硫分离有机抑制剂BKY-1的机理研究[J].有色金属(选矿部分), 2013(5):73-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk201305020
[66] 郎召有, 李昕妍, 刘志成, 等.某高硫铅锌矿新型硫抑制剂的试验研究[J].云南冶金, 2019, 48(5):34-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynyj201905007
[67] 喻贵芳.城门山铜矿低碱度铜硫分离技术[J].有色冶金设计与研究, 2013, 34(6):7-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysyjsjyyj201306003
[68] 付强.某铜矿低碱度铜硫分离试验[J].现代矿业, 2016, 32(1):74-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201601028
[69] 张新海, 李勇, 马荣锴, 等.某螯合捕收剂协同有机盐抑制剂浮选国外某高硫铜矿[J].矿产保护与利用, 2019, 39(4):135-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201904026
[70] 何小民, 徐其红, 杨政国, 等.新型抑制剂HXM-2在铜硫分离中的应用研究[J].矿冶工程, 2016, 36(4):41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201604011
[71] 黄有成, 赵礼兵.无机抑制剂在低碱度铅锌硫分离中的作用研究[J].现代矿业, 2012, 27(1):23-29, 46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201201007
[72] 李凤久, 张洪周.某复杂难选铜硫矿铜硫分离试验研究[J].矿产综合利用, 2017(5):31-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201705007
[73] 岑正伟.大宝山铜硫矿选铜抑制剂的研究与应用[J].南方金属, 2018(4):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nfgt201804004
[74] 周源, 刘亮, 曾娟.低碱度下组合抑制剂对黄铜矿和黄铁矿可浮性的影响[J].金属矿山, 2009(6):69-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks200906020
[75] 徐姣, 吴金鑫, 张月, 等.组合调整剂在细粒级尾矿铜硫分离中的研究与应用[J].中国钼业, 2018, 42(5):33-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmy201805008
[76] 张月, 高延雄, 张硕, 等.新型环保抑制剂在细粒级硫化铜硫分离中的试验研究[J].湖南有色金属, 2019, 35(2):19-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnysjs201902006
[77] 肖骏, 莫振军, 陈代雄, 等.某矽卡岩铜铁矿综合回收铜铁试验研究[J].有色金属(选矿部分), 2016(6):15-20. http://www.cnki.com.cn/Article/CJFDTotal-YSXK201606004.htm
[78] SULTAN AHMED KHOSO, LYU F, MENG XS, et al. Selective separation of chalcopyrite and pyrite with a novel and non-hazardous depressant reagent scheme[J]. Chemical Engineering Science, 2019, 209: 115204. doi: 10.1016/j.ces.2019.115204
[79] 方夕辉, 钟常明, 邱廷省.Ca(ClO)2与腐殖酸钠对黄铜矿和黄铁矿浮选的影响[J].中国矿业, 2007(8):48-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky200708017