Purification and Treatment Technology of Arsenic-Containing Wastewater From Mining and Smelting
-
摘要:
在含砷矿石的开采、选矿、冶炼过程中产生的废水和采用含砷浮选药剂处理矿石后产生的废水统称为矿冶含砷废水。随着我国对矿山环保政策的不断加强,矿冶含砷废水的净化处理成为绿色矿山建设的基本要求。本文概述了矿冶含砷废水的来源,详细阐述了矿冶含砷废水的净化处理技术,如化学沉淀法、电化学法、吸附法和生物法等,并进行了展望。
Abstract:Wastewater, which are produced in the mining, beneficiation and smelting process of arsenic-bearing ores and produced after the ores treatment using arsenic-containing flotation agents, are collectively referred to as arsenic-containing wastewater. With the strengthening of environmental protection policy for mines in China, the purification of arsenic-containing wastewater from mining and metallurgy has become the basic requirement of green mine construction. In this paper, the sources of arsenic-containing wastewater of mining and smelting are summarized, and the purification and treatment technologies of arsenic-containing wastewater from mining and smelting are described in detail, such as chemical precipitation method, electrochemical method, adsorption method and biological method, etc., and the prospect is speculated.
-
-
[1] VEGA-HERNANDEZ S, SANCHÉZ-ANDREA I, WEIJMA J, et al. An integrated green methodology for the continuous biological removal and fixation of arsenic from acid wastewater through the GAC-catalyzed As (Ⅲ) oxidation[J]. Chemical Engineering Journal, 2020: 127758. . doi: 10.1016/j.cej.2020.127758
[2] 陈潇影. 生物膜法处理磷矿选矿废水[J]. 化工管理, 2016, 407(10): 210. doi: 10.3969/j.issn.1008-4800.2016.10.140
[3] 中华人民共和国国家标准. 污水综合排放标准[S]. GB 8978-1996, 1996.
[4] MA Y, YANG Y, SKINNER W, et al. Electrochemical and spectroscopic analysis of enargite (Cu3AsS4) dissolution mechanism in sulfuric acid solution[J]. Hydrometallurgy, 2020, 194: 105346. doi: 10.1016/j.hydromet.2020.105346
[5] CORKHILL C L, VAUGHAN D J. Arsenopyrite oxidation- A review[J]. APPLIED GEOCHEMISTRY, 2009, 24(12): 0-2361. http://www.sciencedirect.com/science/article/pii/S0883292709002406
[6] FENGJUAN LIU, GUOPING ZHANG, SHIRONG LIU, ZHIPING FU, JINGJING CHEN, CHAO MA. Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources[J]. International Biodeterioration & Biodegradation, 2018. 126. 152-159. http://www.sciencedirect.com/science/article/pii/S0964830516308356
[7] 李超, 王丽萍. 选矿废水处理技术的研究进展[J]. 矿产保护与利用, 2020, 40(1): 72-78. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0ac486f5-5aee-4903-b19d-57c9a711d10d
[8] 李雪. 扩散渗析-电解法联用处理高砷污酸的技术研究及工艺安全评价[D]. 天津: 天津理工大学, 2019.
[9] JIA YL, TAO W, ZHONG HS, et al. Treatment of high arsenic content wastewaterby membrane ltration[J]. Separation and Purification Technology, 2018, 199: 282-288. doi: 10.1016/j.seppur.2018.01.040
[10] 门玉, 李洪枚, NASANTOGTOKH OTGON, 等. 多级沉淀法处理含砷废水[J]. 过程工程学报, 2017, 17(2): 259-262. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201702010.htm
[11] 曾能周. 采选矿废水中高浓度砷治理工艺的试验研究[J]. 广州化工, 2009, 37(1): 125-126, 144. doi: 10.3969/j.issn.1001-9677.2009.01.043
[12] 应国民. 沉淀法脱除污酸中砷的研究[D]. 昆明: 昆明理工大学, 2016.
[13] 李利军. 混凝沉淀处理锡选矿废水的研究[J]. 云南化工, 2016, 43(5): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201605018.htm
[14] 严群, 桂勇刚, 周娜娜, 等. 混凝沉淀法处理含砷选矿废水[J]. 环境工程学报, 2014, 8(9): 3683-3688. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201409026.htm
[15] 赖兰萍, 陈后兴, 陈冬英. 氧化-铁盐混凝沉淀法处理钨冶炼含砷废水的试验研究[J]. 中国钨业, 2018, 33(1): 66-70. doi: 10.3969/j.issn.1009-0622.2018.01.011
[16] 谭军, 李广阔, 李星星. 两级混凝沉淀法处理含砷化工废水研究[J]. 河南城建学院学报, 2014, 23(2): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJGZ201402010.htm
[17] 聂静. 有色金属冶炼生产中含砷废水和废渣的治理研究[D]. 武汉: 武汉理工大学, 2006.
[18] 姚乐. 改性膨润土吸附处理含砷废水实验研究[J]. 科学技术与工程, 2010, 10(16): 4093-4095, 4104. doi: 10.3969/j.issn.1671-1815.2010.16.070
[19] 宋博宇. 尾矿砂浆中和-硫化-混凝工艺处理某有色金属采选企业生产废水的研究[D]. 长春: 吉林大学, 2013.
[20] BIN HU, TIAN-ZU YANG, WEI-FENG LIU, et al. Removal of arsenic from acid wastewater via sulfide precipitation and its hydrothermal mineralization stabilization[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2411-2421. doi: 10.1016/S1003-6326(19)65147-2
[21] US Environmental Protection Agency[EB/OL]. [2021-02-25]. Toxicity Characteristic Leaching Procedure. See http://www.epa.govsw-846pdfs1311.pdf.
[22] 李迪汉. 铅锌冶炼烟气制酸废水处理工艺研究[J]. 湖南有色金属, 2005(3): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ200503010.htm
[23] 刘一鸣. 硫化氢气体在有色冶炼污酸治理中的应用前景[J]. 有色设备, 2020, 193(2): 4-6, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-YSSB202002002.htm
[24] 蒋晓云, 王磊, 易亚男. 硫化氢工业合成及在污酸净化中的应用[J]. 有色设备, 2019, 186(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YSSB201901012.htm
[25] 王娟. 电场法水中除砷机理及不同材料除砷效率研究[D]. 昆明: 云南大学, 2010.
[26] MIGUEL A. SANDOVAL, ROSALBA FUENTES, ABDOULAYE THIAM, RICARDO SALAZAR. Arsenic and fluoride removal by electrocoagulation process: A general review. [J] Science of The Total Environment, 2020, 753. 142108 http://www.sciencedirect.com/science/article/pii/S0048969720356370
[27] 邵谱生. 电凝法在处理湿法钨冶炼含砷废水中的研究与应用[D]. 南昌: 南昌航空大学, 2014.
[28] PATRICIO NUÑEZ, HENRIK K. HANSEN, SANDRA AGUIRRE, CRISTIAN MAUREIRA. Electrocoagulation of arsenic using iron nanoparticles to treat copper mineral processing wastewater[J]. Separation and Purification Technology, 2011, 79(2). 285-290 http://www.sciencedirect.com/science/article/pii/S1383586611001304
[29] 全英聪, 吕晋芳, 童雄. 含铬混合废水的净化技术及资源化利用现状[J]. 电镀与涂饰, 2020, 39(23): 1676-1681.
[30] 杜唯豪. 电渗析处理含砷酸性废水的离子迁移过程研究[D]. 西安: 西安建筑科技大学, 2017.
[31] 熊义期, 陆开臣, 张宏伟. 锌冶炼烟气制酸废水"零"排放工艺设计[J]. 硫酸工业, 2018, 282(3): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LSGY201803019.htm
[32] AHMED BASHA C, BHADRINARAYANA N S, ANANTHARAMAN N, MEERA SHERIFFA BEGUM K M. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. [J]. Journal of hazardous materials, 2008, 152(1). 71-78 http://www.ncbi.nlm.nih.gov/pubmed/17659835
[33] 罗臻, 王毅霖, 张晓飞. 有机废水处理中电化学氧化技术发展趋势[J]. 油气田环境保护, 2020, 30(6): 1-5, 67.
[34] 余泽利. 超声与电化学耦合作用下含砷酸性废水中砷氧化过程的研究[D]. 西安: 西安建筑科技大学, 2017.
[35] CLAUDIA GUTIéRREZ, HENRIK K. HANSEN, PATRICIO NUÑEZ, ERIKA VALDÉS. Electrochemical peroxidation using iron nanoparticles to remove arsenic from copper smelter wastewater[J]. Electrochimica Acta, 2015, 181. 228-232 http://www.sciencedirect.com/science/article/pii/S0013468615000900
[36] P. V. NIDHEESH, T. S. ANANTHA SINGH. Arsenic removal by electrocoagulation process Recent trends and removal mechanism[J]. Chemosphere, 2017(181): 418-432. http://www.sciencedirect.com/science/article/pii/S0045653517306173
[37] 杨智宽. 用蛇纹石处理含铜废水的研究[J]. 环境科学与技术, 1997(2): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS199702006.htm
[38] 周勤俭, 李先柏, 杨静, 等. 大洋多金属结核吸附重金属离子的研究[J]. 湿法冶金, 1999(1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ901.020.htm
[39] 高效江, 戎秋涛. 用麦饭石净化重金属废水的研究[J]. 上海环境科学, 1996(12): 25-26, 36.
[40] DOBROWOLSKI R, OTTO M. Preparation and evaluation of Fe-loaded activated carbon for enrichment of selenium for analytical and environmental purposes[J]. Chemosphere, 2013, 179(2): 1-9. http://europepmc.org/abstract/MED/23079163
[41] P. NAVARRO, F.J. ALGUACIL. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. [J]. Hydrometallurgy, 2002, 66(1-3): 101-105. http://www.sciencedirect.com/science/article/pii/S0304386X02001081
[42] 王爱平. 活性炭对溶液中重金属的吸附研究[D]. 昆明: 昆明理工大学, 2003.
[43] 曾娟. 处理酸性含砷废水的试验研究[D]. 赣州: 江西理工大学, 2010.
[44] 许杰. 羟基铁覆膜膨润土对砷的吸附性能研究[J]. 环境工程, 2015, 33(S1): 985-988, 996. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC2015S1245.htm
[45] BARAKAN SHIMA, AGHAZADEH VALEH. Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater. [J]. Journal of hazardous materials, 2019, 378. 120779 http://www.sciencedirect.com/science/article/pii/S0304389419307216
[46] 王慧敏. 赤泥改性浮石吸附剂对水体中砷去除规律的研究[D]. 昆明: 昆明理工大学, 2014.
[47] 邓书平. 改性粉煤灰吸附处理含砷废水研究[J]. 矿冶, 2008(3): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200803029.htm
[48] 王湖坤, 龚文琪, 彭建军, 等. 粉煤灰处理含砷工业废水的研究[J]. 工业水处理, 2007, 194(4): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC200704013.htm
[49] 郝峰焱, 祝星, 祁先进, 等. 钢渣改性对污酸除砷的影响[J]. 中国有色金属学报, 2020, 30(7): 1703-1713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202007023.htm
[50] 潘尹银, 徐双, 刘晨明, 等. 吸附法去除钨冶炼废水中的砷[J]. 化工环保, 2018, 38(2): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-HGHB201802013.htm
[51] LI ZONGCHEN, MA SHENGJIA, CHEN CHANGXUN, QU GUOJUAN, JIN WEI, ZHAO YAPING. Efficient capture of arsenate from alkaline smelting wastewater by acetate modulated Yttrium based metal-organic frameworks[J]. Chemical Engineering Journal, 2020. 397: 125292 http://www.sciencedirect.com/science/article/pii/S1385894720312845
[52] 沈青峰, 王瑞永, 范小双. 粉煤灰/膨润土复合除砷吸附剂的制备及应用[J]. 中国非金属矿工业导刊, 2016, 120(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201601008.htm
[53] 蒋敏敏, 张学洪, 张欢, 等. 砷污染水体的微生物处理机理及应用研究进展[J]. 工业安全与环保, 2016, 42(12): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201612017.htm
[54] 谢朝晖. 生物法对提高酸性重金属废水回用率的探讨[J]. 有色金属设计, 2012, 39(2): 58-61, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJSS201202016.htm
[55] 卢致明, 韩彬, 张亮亮, 等. 生物制剂在多金属选矿废水处理的应用研究[J]. 世界有色金属, 2019, 522(6): 127-129. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201906066.htm
[56] 庄明龙, 柴立元, 闵小波, 等. 含砷废水处理研究进展[J]. 工业水处理, 2004(7): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC200407005.htm
[57] 向雪松. 铁盐-剩余活性污泥法处理高浓度碱性含砷废水[D]. 长沙: 中南大学, 2007.
[58] LI WENXU, LIU JING, HUDSON-EDWARDS KAREN A. Seasonal variations in arsenic mobility and bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan Province, China[J]. Science of the Total Environment, 2020, 749. 142353 http://www.sciencedirect.com/science/article/pii/S0048969720358824
[59] 吴迪, 邓琴, 耿丹, 等. 贵州废弃铅锌矿区优势植物中汞、砷含量及富集特征研究[J]. 贵州师范大学学报(自然科学版), 2014, 32(5): 42-46, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR201405009.htm
[60] 廖家隆, 张喆秋, 陈丽杰, 等. 含砷废水处理研究进展[J]. 有色金属科学与工程, 2018, 9(1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201801015.htm
[61] KASHIF HAYAT, SAIQA MENHAS, JOCHEN BUNDSCHUH, HASSAN JAVED CHAUDHARY. Microbial biotechnology as an emerging industrial wastewater treatment process for arsenic mitigation: A critical review[J]. Journal of Cleaner Production, 2017, 151. 427-438. http://www.sciencedirect.com/science/article/pii/S0959652617305188
[62] 孟博, 耿存珍. 微生物法处理含砷废水研究进展[J]. 水处理技术, 2013, 39(11): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201311002.htm
[63] 商娟, 伍红强, 邹小丽. 柳树对某矿区低浓度含砷废水的处理效果[J]. 江西理工大学学报, 2020, 41(3): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-NFYX202003010.htm
[64] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 2002.04.28
[65] 王海娟. 西南含砷金矿区砷富集植物筛选及其除砷应用研究[D]. 昆明: 昆明理工大学, 2012.
[66] 李秀玲, 韦岩松, 辛磊, 等. 尾矿区砷污染土壤的植物、微生物协同修复[J]. 湿法冶金, 2019, 38(1): 64-68, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201901017.htm
[67] 李菁, 李俊, 路春娥. 膜分离技术在治理含砷废水中的应用研究[J]. 化工时刊, 1999(4): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJS199904004.htm
[68] 杜修埔, 杨洪忠, 王怀斌, 等. 某矿区含砷地表水的治理研究[J]. 黄金, 2016, 37(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201602026.htm
[69] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准[S]. GB 5749-2006, 2006.12.29
[70] 王欣. Fe-MIL-101、ZIF-8及改性天然SiO2去除水中砷的研究[D]. 昆明: 云南大学, 2015.
[71] 高小娟, 王璠, 汪启年. 含砷废水处理研究进展[J]. 工业水处理, 2012, 32(2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSC201202004.htm
[72] 黄建洪, 卓琼芳, 郑文丽, 等. 离子交换法处理含砷废水的小试/中试试验[J]. 湖泊科学, 2016, 28(5): 1018-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201605011.htm
[73] 孙家乐. 重金属废水净化的近代方法-在株冶废水处理试验中的应用和研究[J]. 湖南冶金, 1979(2): 16, 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI197902005.htm
[74] VYMAZAL JAN. Constructed wetlands for wastewater treatment: five decades of experience. [J]. Environmental science & technology, 2011, 45(1). 61-69.
[75] ANNA-KAISA RONKANEN, BJØRN KLØVE. Long-term phosphorus and nitrogen removal processes and preferential flow paths in Northern constructed peatlands[J]. Ecological Engineering, 2009, 35(5). 843-855. http://www.cabdirect.org/abstracts/20093133487.html
[76] KATHARINA PALMER, ANNA-KAISA RONKANEN, BJØRN KLØVE. Efficient removal of arsenic, antimony and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use[J]. Ecological Engineering, 2015, 75. 350-364.
-
计量
- 文章访问数: 2185
- PDF下载数: 62
- 施引文献: 0