The Application of Organic Macromolecular Depressants in the Beneficiation of Polymetallic Sulfide Ores
-
摘要:
从天然高分子和合成高分子两大类化合物出发,总结归纳了有机大分子抑制剂在多金属硫化矿浮选分离中的应用进展,阐述了有机大分子抑制剂在矿物表面的作用机制及其抑制机理,并结合应用实例综述了天然大分子抑制剂和合成大分子抑制剂在多金属硫化矿分离中的抑制效果及应用现状,预测了有机大分子抑制剂的未来发展方向。
Abstract:In this paper, the application development of organic macromolecular depressants in the beneficiation of polymetallic sulfide ores was summarized from the natural polymers and synthetic polymers. The depressant mechanisms and its adsorption patterns on sulfide ores were introduced. Practical application cases were used to elaborate the application development of natural and synthetic macromolecule depressants. The future development trend of organic macromolecular depressants was also predicted by the overview of the current application status of macromolecular depressants.
-
Key words:
- macromolecular /
- depressants /
- polymetallic sulfide ore /
- floatation /
- separation /
- Cu-Pb separation /
- pyrite /
- talc
-
图 2 改性木质素磺酸盐化学结构[55]
Figure 2.
-
[1] 潘祖仁. 高分子化学(第三版)[M]. 北京: 化学工业出版社, 2003.
[2] 郑学晶, 霍书浩. 天然高分子材料[M]. 北京: 化学工业出版社, 2010.
[3] 李桦, 彭勇军, 刘奇, 等. 多糖在硫化矿物浮选中的应用及其作用机理[J]. 武汉化工学院学报, 1998, 2(12): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG802.011.htm
[4] DONG AQ, XIE J, WANG WM, et al. A novel method for amino starch preparation and its adsorption for Cu(Ⅱ) and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2010, 181(1): 448-454.
[5] 邹永强. 淀粉改性高效絮凝剂的合成与应用研究[D]. 西安: 西北大学, 2016.
[6] 肖志刚, 邵晨, 杨柳, 等. 淀粉改性方法的研究现状及进展[J]. 农产品加工, 2020(3): 81-84+88. https://www.cnki.com.cn/Article/CJFDTOTAL-NCPJ202003022.htm
[7] 赵凯强, 杨超, 王晨. 阳离子改性淀粉絮凝剂的研究进展[J]. 当代化工, 2019, 48(9): 2162-2166. doi: 10.3969/j.issn.1671-0460.2019.09.071
[8] 赵盼星, 刘文刚, 周晓彤, 等. 淀粉类产品在矿物加工中的应用研究现状[J]. 矿产保护与利用, 2020, 40(4): 152-156. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d8b5fa8c-b34c-4606-a37d-39c3024b34c4
[9] HAN G, WEN SM, WANG H, et al. Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity[J]. Minerals Engineering, 2019, 143: 106015. doi: 10.1016/j.mineng.2019.106015
[10] RATH S. SWAGAT, SAHOO HURSHIKESH. A review on the application of starch as depressant in iron ore flotation[J]. Mineral Processing and Extractive Metallurgy Review, 2020(4): 1-14. http://www.researchgate.net/publication/346621192_A_Review_on_the_Application_of_Starch_as_Depressant_in_Iron_Ore_Flotation
[11] ZHOU Y, ALBIJANIC BORIS, TADESSE BOGALE, et al. Flotation behavior of pyrite in sub-bituminous and meta-bituminous coals with starch depressant in a microflotation cell[J]. Fuel Processing Technology, 2019, 187: 1-15. doi: 10.1016/j.fuproc.2019.01.004
[12] 路亮, 曾红, 张行荣, 等. 天然瓜尔胶化合物在矿物加工中的应用进展[J]. 矿业研究与开发, 2019, 39(10): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201910018.htm
[13] BICAK O, EKMEKCI Z, BRADSHAW DJ, et al. Adsorption of guar gum and CMC on pyrite[J]. Minerals Engineering, 2007(20): 996-1002. http://www.sciencedirect.com/science/article/pii/S0892687507000817
[14] LASKOWSKI J. S, LIU Q, O'CONNOR C.T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84: 59-68. doi: 10.1016/j.minpro.2007.03.006
[15] 邱仙辉, 孙传尧. 古尔胶和鞣酸添加方式对硫化矿浮选的影响[J]. 北京科技大学学报, 2014, 36(3): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201403002.htm
[16] TAN XIN, ZHU YANGGE, SUN CHUANYAO, et al. Adding cationic guar gum after collector: A novel investigation in flotation separation of galena from sphalerite[J]. Mineral Engineering, 2020, 157: 106542. doi: 10.1016/j.mineng.2020.106542
[17] 郭蔚, 彭金秀, 冯博, 等. 刺槐豆胶在铜硫分离中的抑制作用及机理分析[J]. 矿产保护与利用, 2018(1): 76-80. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7b870570-0baa-4d8f-aa0c-101ad229b3ae
[18] 陈渊淦, 杨思琦, 汪惠惠, 等. 胶类抑制剂对滑石的抑制行为及机理[J]. 非金属矿, 2020, 43(4): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202004002.htm
[19] 冯博, 郭宇涛, 王涛, 等. 氧化剂在刺槐豆胶浮选分离方铅矿和闪锌矿中的作用及机理[J]. 中南大学学报(自然科学版), 2020, 51(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202001001.htm
[20] A LóPEZ VALDIVIESO, T CELEDóN CERVANTESA, S SONG, et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector[J]. Minerals Engineering, 2004, 17: 1001-1006. doi: 10.1016/j.mineng.2004.04.003
[21] JAN DRZYMALA, JANUSZ KAPUSNIAK, PIOTR TOMASIK. Removal of lead minerals from copper industrial flotation concentrates by xanthate flotation in the presence of dextrin[J]. International Journal of Mineral Processing, 2003, 65(1): 147-155. http://www.sciencedirect.com/science/article/pii/S0301751602001564
[22] BRAGA P.F. A, CHAVES A.P., LUZ A. B, et al. The use of dextrin in purification by flotation of molybdenite concentrates[J]. International Journal of Mineral Processing, 2014, 127: 23-27. doi: 10.1016/j.minpro.2013.12.007
[23] 周济. 低温等离子体强化低阶煤反浮选脱硫技术研究[D]. 北京: 中国矿业大学, 2018.
[24] 李国栋. 抑铅浮锌分离铅锌混合精矿的工艺及机理研究[D]. 昆明: 昆明理工大学, 2014.
[25] LIU DEZHI, ZHANG GUOFAN, CHEN YANFEI, et al. Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite[J]. Minerals Engineering, 2020, 145: 106098. doi: 10.1016/j.mineng.2019.106098
[26] CHEN XIONG, GU GUOHUA, CHEN ZHIXIANG. Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(12): 1495-1503. doi: 10.1007/s12613-019-1848-z
[27] 邱仙辉, 孙传尧, 邱廷省. 鞣酸对方铅矿及黄铁矿的抑制作用[J]. 东北大学学报(自然科学版), 2015, 36(1): 124-128. doi: 10.3969/j.issn.1005-3026.2015.01.027
[28] 邱仙辉, 于洋, 张春菊. 有机抑制剂鞣酸对黄铜矿和方铅矿浮选的影响[J]. 有色金属工程, 2016, 6(6): 62-66. doi: 10.3969/j.issn.2095-1744.2016.06.014
[29] SRDJAN M. BULATOVIC. Handbook of Flotation Reagents: Chemistry, Theory and Practice[M]. SBM Mineral Processing and Engineering Services LTD, 2015.
[30] LIU RUNQING, SUN WEI, HU YUEHUA, et al. Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite[J]. Journal of Central South University of Technology, 2009, 16: 753-757. doi: 10.1007/s11771-009-0125-0
[31] SARQUIS P. E, MENENDEZ-AGUADO J. M, MAHAMUD M. M, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84: 723-726. doi: 10.1016/j.jclepro.2014.08.025
[32] 龙良俊. 污泥腐殖酸特性及其改性后对重金属的吸附研究[D]. 重庆: 重庆大学, 2018.
[33] STEVENSON F J. Humus chemistry: genesis, composition, reactions[J]. Soil Science, 1982, 135(2): 129-130. http://ci.nii.ac.jp/naid/10004980919
[34] LIU RUIZENG, QIN WENQING, JIAO FEN, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 265-271. doi: 10.1016/S1003-6326(16)64113-4
[35] YUAN DUOWEI, XIE LEI, SHI XINGWEI, et al. Selective flotation separation of molybdenite and talc by humic substances[J]. Minerals Engineering, 2017, 117: 34-41. http://www.sciencedirect.com/science/article/pii/S0892687517302996
[36] WEI QIAN, DONG LIUYANG, JIAO FEN, et al. The synergistic depression of lime and sodium humate on the flotation separation of sphalerite from pyrite[J]. Minerals Engineering, 2021, 163: 106779. doi: 10.1016/j.mineng.2021.106779
[37] 王晨飞, 杨亮, 崔萍. 羧甲基淀粉研究新进展[J]. 染整技术, 2016, 38(11): 1-5. doi: 10.3969/j.issn.1005-9350.2016.11.001
[38] VIŠIć KSENIJA, PUŠIć TANJA, ĈURLIN MIRJANA. Carboxymethyl cellulose and carboxymethyl starch as surface modifiers and greying inhibitors in washing of cotton fabrics[J]. Polymers, 2021, 13(7): 1174. doi: 10.3390/polym13071174
[39] 张锁君. 羧甲基纤维素对抑制滑石浮选的作用机理[J]. 洛阳师范学院学报, 2014(5): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-LSZB201405019.htm
[40] 欧乐明, 齐超. 非极性表面矿物滑石与辉钼矿浮选分离中的多糖抑制[J]. 金属矿山, 2015(5): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201505020.htm
[41] SHORTRIDGE PG, HARRIS PJ, BRADSHAW DJ, et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc[J]. International Journal of Mineral Processing, 2000, 3(59): 215-224. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1071/AR9550068
[42] 齐超, 欧乐明, 邱章伟, 等. 不同种CMC对两种非极性矿物表面的抑制作用[J]. 有色金属工程与科学, 2015, 6(6): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201506017.htm
[43] 罗春华, 张秀品, 苏晓晖. 抑制剂CMC在青海某硫化矿铜镍矿浮选中的应用研究[J]. 2017, 7(1): 55-59.
[44] 李长斌, 张国范, 刘洪江, 等. 铜离子对CMC浮选分离滑石和黄铁矿的影响[J]. 有色金属工程, 2020, 10(6): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202006011.htm
[45] 白睿, 魏志聪, 彭蓉, 等. 铜铅硫化矿物浮选分离中铅抑制剂的研究进展[J]. 矿产保护与利用: 1-11[2021-04-19]. https://doi.org/10.13779/j.cnki.issn1001-0076.2021.07.003.
[46] 孟书青, 黄炎珠, 何志权. CMC在浮选分离铅锌矿中的作用[J]. 中南矿冶学院学报, 1981(4): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD198104007.htm
[47] 迟晓鹏, 王纪镇, 邓海波, 等. 铜铅分离新型铅抑制剂研究[J]. 金属矿山, 2013(11): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201311017.htm
[48] 吉毅, 李宗石, 乔卫红. 瓜尔胶的化学改性[J]. 日用化学工业, 2005, 35(2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-CHEM200502013.htm
[49] DAVID A. BEATTIE, LE HUYNH, GILLIAN B. KAGGWA, et al. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation[J]. International Journal of Mineral Processing, 2006, 78(4): 238-349. http://www.sciencedirect.com/science/article/pii/S0301751605001626
[50] LUO TONGTONG, SUN LITIAN, CHEN YANNAN, et al. Synthesis and carboxymethyl guar gum depressant and its application in beneficiation[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2018, 43(3): 36-42. http://en.cnki.com.cn/Article_en/CJFDTotal-KMLG201804006.htm
[51] 罗彤彤, 孙立田, 陈雁南, 等. 瓜尔胶选矿抑制剂环保型合成工艺研究[J]. 铜业工程, 2018(1): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201801011.htm
[52] 范培强. 有机调整剂对蛇纹石与黄铁矿浮选行为影响的研究[D]. 昆明: 昆明理工大学, 2019.
[53] AUDREY BEAUSSART, LUKE PARKINSON, AGNIESEZKA MIERCZYNSKAVASILEV, et al. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies[J]. Journal of Colloid and Interface Science, 2012, 368(1): 608-615. http://www.sciencedirect.com/science/article/pii/S0021979711013750
[54] MAGNUS NORGREN, HAKEN EDLUND. Lignin: Recent advances and emerging applications[J]. Current Opinion in Colloid and Interface Science, 2014, 19(5): 409-416. http://www.sciencedirect.com/science/article/pii/S1359029414000867
[55] 张保平, 郭美辰, 刘运, 等. 木质素及其衍生物在提取冶金中的研究进展[J]. 生物加工过程, 2018, 16(6): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJG201806015.htm
[56] 张其东. 辉钼矿与滑石可浮性差异调控基础研究[D]. 沈阳: 东北大学, 2016.
[57] OUYANG XINPING, QIU XUEQIN, CHEN P. Physicochemical characterization of calcium lignosulfonate-a potentially useful water reducer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282: 489-497. http://www.sciencedirect.com/science/article/pii/S0927775705009763
[58] MU YUFAN, PENG YONGJUN, ROLF ANDERAS LAUTEN. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant[J]. ElectrochimicaActa, 2015, 174(1): 133-142. http://www.sciencedirect.com/science/article/pii/S0013468615013134
[59] MU YUFAN, PENG YONGJUN, ROLF A. LAUTEN. The depression of copper-activated pyrite in flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96-97: 113/122. http://www.sciencedirect.com/science/article/pii/S0892687516301625
[60] 刘润清. 利用工业废弃物合成选矿药剂及其在铜铅锌铁硫化矿浮选中的作用机制[D]. 长沙: 中南大学, 2010.
[61] PUGH R J. Macromolecular organic depressants in sulphide flotation-A review, 1. Principles, types and applications[J]. International Journal of Mineral Processing, 1989, 25(1-2): 101-130. http://www.sciencedirect.com/science/article/pii/0301751689900598
[62] 梁爽, 路亮, 张行荣. 有机抑制剂在黄铁矿浮选中的研究进展[J]. 中国矿业, 2020, 29(S2): 300-302+307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2020S2064.htm
[63] MOODY G. The use of polyacrylamides in mineral processing[J]. Minerals Engineering, 1992, 5(3-5): 479-492. http://www.onacademic.com/detail/journal_1000035758615810_a2ba.html
[64] AIMONE FM, BOOTH RB. Flotation of ores using addition polymers as depressants[J]. US, 1956. http://www.freepatentsonline.com/2740522.html
[65] BOULTON A, FORNASIERO D, RALSTON J. Selective depression of pyrite with polyacrylamide polymers[J]. International Journal of Mineral Processing, 2001, 61: 13-22. http://www.sciencedirect.com/science/article/pii/S0301751600000247
[66] HUANG PENG, WANG LEI, LIU QI. Depressant function of high molecular weight polyacrylamide in the xanthate flotation of chalcopyrite and galena[J]. International Journal of Mineral Processing, 2014, 128: 6-15. http://www.sciencedirect.com/science/article/pii/S0301751614000209
[67] ZHANG JIANFENG, HU YUEHUA, WANG DIANZUO, et al. Depressing effect of hydroxamic polyacrylamide on pyrite[J]. Journal of Central South University of Technology, 2004, 11(4): 380-384.
[68] ZHANG XINGRONG, ZHU YANGGE, ZHENG GUIBING, et al. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system[J]. Minerals Engineering, 2019, 134: 291-299. http://www.sciencedirect.com/science/article/pii/S0892687519300573
[69] ZHANG XINGRONG, LU LIANG, ZENG HONG, et al. A macromolecular depressant for galena and its flotation behavior in the separation from molybdenite[J]. Minerals Engineering, 2020, 157: 106576. http://www.sciencedirect.com/science/article/pii/S0892687520303964
[70] ZHANG XINGRONG, LU LIANG, CAO YIJUN, et al. The flotation separation of molybdenite from chalcopyrite using a polymer depressant and insights to its adsorption mechanism[J]. Chemical Engineering Journal, 2020, 395: 125137. http://www.sciencedirect.com/science/article/pii/S1385894720311293
[71] ZHANG XINGRONG, QIAN ZHIBO, ZHENG GUIBING, et al. The design of a macromolecular depressant for galena based on DFT studies and its application[J]. Minerals Engineering, 2017, 112: 50-56. http://smartsearch.nstl.gov.cn/paper_detail.html?id=89e29e8b6da0247a535dfa8eaba6702e
[72] 齐丁丁, 李治华, 胡熙庚. 用聚丙烯酸钠分离黄铜矿和方铅矿[J]. 矿冶工程, 1991(3): 32-34+38. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199103007.htm