赤泥中铁的回收利用研究进展

柳佳建, 陈伟, 周康根, 张雪凯, 彭长宏, 何德文. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75. doi: 10.13779/j.cnki.issn1001-0076.2021.03.011
引用本文: 柳佳建, 陈伟, 周康根, 张雪凯, 彭长宏, 何德文. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75. doi: 10.13779/j.cnki.issn1001-0076.2021.03.011
LIU Jiajian, CHEN Wei, ZHOU Kanggen, ZHANG Xuekai, PENG Changhong, HE Dewen. Research Progress of Iron Recovery from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 70-75. doi: 10.13779/j.cnki.issn1001-0076.2021.03.011
Citation: LIU Jiajian, CHEN Wei, ZHOU Kanggen, ZHANG Xuekai, PENG Changhong, HE Dewen. Research Progress of Iron Recovery from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 70-75. doi: 10.13779/j.cnki.issn1001-0076.2021.03.011

赤泥中铁的回收利用研究进展

  • 基金项目:
    国家自然科学基金青年项目(201707167)
详细信息
    作者简介: 周康根(1963-), 男, 博士, 教授, 博士生导师, 主要从事赤泥全资源综合利用研究, E-mail: zhoukg63@163.com
  • 中图分类号: X758

Research Progress of Iron Recovery from Red Mud

  • 赤泥是铝土矿生产氧化铝过程中产生的强碱性固体废渣,目前的堆存处理不但存在环境隐患,且未能对其中富含的金属资源进行利用。本文在概述赤泥的主要性质及处置现状基础上,针对其中含量最高的铁资源的回收技术进行详细介绍,从物理分选法、火法冶金和湿法冶金三方面对国内外最新的赤泥提铁技术进行综述,并对不同提铁方法的工艺路线和技术参数等进行说明及比较,评述了各种方法的优缺点及适用范围,并对各种方法的发展方向进行了展望。

  • 加载中
  • 图 1  我国赤泥年产量及综合利用率

    Figure 1. 

    图 2  还原焙烧-磁选工艺流程

    Figure 2. 

  • [1]

    岳晶晶, 刘钟森, 程越迈, 等. 不同种植植物对赤泥盐离子迁移与分布的影响[J]. 矿产保护与利用, 2020, 40(3): 46-50. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=469c9825-6d92-4e92-afc8-55435ba92b9c

    [2]

    雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019, 39(3): 15-20. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3b6acf78-e474-4117-8251-9502830cdeef

    [3]

    ZHANG X, ZHOU K, CHEN W, et al. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach[J]. Journal of Central South University, 2019, 26(2): 458-466. doi: 10.1007/s11771-019-4018-6

    [4]

    杨艳娟, 李建伟, 张茂亮, 等. 改性赤泥免烧砖的制备与放射性屏蔽机理分析[J]. 矿产保护与利用, 2019, 39(1): 95-99. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=969ed8fa-4b2b-439a-b459-97497b6df6cd

    [5]

    李彬, 王枝平, 曲凡, 等. 赤泥中有价金属的回收现状与展望[J]. 昆明理工大学学报(自然科学版), 2019, 44(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201902002.htm

    [6]

    ZHANG X, ZHOU K, LEI Q, et al. Selective Removal of Iron from Acid Leachate of Red Mud by Aliquat 336[J]. JOM, 2019, 71(12): 4608-4615. doi: 10.1007/s11837-019-03801-4

    [7]

    ARROYO F, LUNA-GALIANO Y, LEIVA C, et al. Environmental risks and mechanical evaluation of recycling red mud in bricks[J]. Environmental Research, 2020, 186: 109537. doi: 10.1016/j.envres.2020.109537

    [8]

    IOANNIDI A, OULEGO P, COLLADO S, et al. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water[J]. Journal of Environmental Management, 2020, 270: 110820. doi: 10.1016/j.jenvman.2020.110820

    [9]

    LI X, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1342-1347. doi: 10.1016/S1003-6326(08)60447-1

    [10]

    LIU X, GAO P, YUAN S, et al. Clean utilization of high-iron red mud by suspension magnetization roasting[J]. Minerals engineering, 2020, 157: 106553. doi: 10.1016/j.mineng.2020.106553

    [11]

    LI G, LIU M, RAO M, et al. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts[J]. Journal of Hazardous Materials, 2014, 280: 774-780. doi: 10.1016/j.jhazmat.2014.09.005

    [12]

    常军, 邵延海, 李硕, 等. 云南某赤泥还原焙烧-磁选试验研究[J]. 轻金属, 2017(8): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201708002.htm

    [13]

    LEI Q, HE D, ZHOU K, et al. Separation and recovery of scandium and titanium from red mud leaching liquor through a neutralization precipitation-acid leaching approach[J]. Journal of Rare Earths, 2020. https://doi.org/10.1016/j.jre.2020.07.030 doi: 10.1016/j.jre.2020.07.030

    [14]

    顾汉念, 郭腾飞, 马时成, 等. 赤泥中铁的提取与回收利用研究进展[J]. 化工进展, 2018, 37(9): 3599-3608. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201809043.htm

    [15]

    齐川. 赤泥中有价金属提取的进展[J]. 轻金属, 2019(6): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201906003.htm

    [16]

    许金越. SLon脉动高梯度磁选技术在赤泥除铁的应用及理论研究[D]. 赣州: 江西理工大学, 2009.

    [17]

    廖国平, 钱枝花, 黄会春. SLon磁选机在氧化铝产业链中的应用[J]. 现代矿业, 2010, 26(8): 118-119. doi: 10.3969/j.issn.1674-6082.2010.08.039

    [18]

    李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201802040.htm

    [19]

    武国娟. 赤泥中铁磁选回收方法的研究[J]. 科学与财富, 2019(27): 282.

    [20]

    周凯. 低温拜耳法赤泥磁选提铁试验研究[J]. 现代矿业, 2011, 27(1): 36-38. doi: 10.3969/j.issn.1674-6082.2011.01.008

    [21]

    徐淑安, 邵延海, 熊述清, 等. 疏水团聚-磁种法回收赤泥中微细粒铁矿试验[J]. 矿产综合利用, 2015(6): 62-66. doi: 10.3969/j.issn.1000-6532.2015.06.016

    [22]

    吕玉辰. 克钦邦铁锡矿选矿试验研究[D]. 昆明: 昆明理工大学, 2019.

    [23]

    顾汉念, 王宁, 刘世荣, 等. 烧结法赤泥的物质组成与颗粒特征研究[J]. 岩矿测试, 2012, 31(2): 312-317. doi: 10.3969/j.issn.0254-5357.2012.02.022

    [24]

    刘培坤, 姜兰越, 杨兴华, 等. 全重选法赤泥选铁富集性能试验研究[J]. 轻金属, 2017(6): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS201706006.htm

    [25]

    张谌虎, 石开仪, 陈鹏, 等. 回收某赤泥中铁的选矿试验研究[J]. 矿业研究与开发, 2020, 40(7): 156-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202007031.htm

    [26]

    LI X, ZHOU Z, WANG Y, et al. Enrichment and separation of iron minerals in gibbsitic bauxite residue based on reductive Bayer digestion[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1980-1990. doi: 10.1016/S1003-6326(20)65355-9

    [27]

    杜金明, 蔡冰冰, 胡波, 等. 分级重选—磁选—反浮选联合工艺处理某高泥赤铁矿[J]. 湖南有色金属, 2021, 37(1): 16-20. doi: 10.3969/j.issn.1003-5540.2021.01.005

    [28]

    陆扬. 一种从氧化铝赤泥中回收铁精矿和矿砂的工艺: 111589572A[P]. 2020.08.28.

    [29]

    WEI D, JUN HUI X, YANG P, et al. Iron extraction from red mud using roasting with sodium salt[J]. Mineral processing and extractive metallurgy review, 2021, 42(3): 153-161. doi: 10.1080/08827508.2019.1706049

    [30]

    LIU Y, ZUO K, YANG G, et al. Recovery of ferric oxide from bayer red mud by reduction roasting-magnetic separation process[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2016, 31(2): 404-407. doi: 10.1007/s11595-016-1383-y

    [31]

    VALEEV D, ZINOVEEV D, KONDRATIEV A, et al. Reductive smelting of neutralized red mud for iron recovery and produced pig iron for heat-resistant castings[J]. Metals, 2020, 10(1): 32. http://www.researchgate.net/publication/338140043_Reductive_Smelting_of_Neutralized_Red_Mud_for_Iron_Recovery_and_Produced_Pig_Iron_for_Heat-Resistant_Castings

    [32]

    SAMOUHOS M, TAXIARCHOU M, PILATOS G, et al. Controlled reduction of red mud by H2 followed by magnetic separation[J]. Minerals Engineering, 2017, 105: 36-43. doi: 10.1016/j.mineng.2017.01.004

    [33]

    JIN J, LIU X, YUAN S, et al. Innovative utilization of red mud through co-roasting with coal gangue for separation of iron and aluminum minerals[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 298-307. doi: 10.1016/j.jiec.2021.03.038

    [34]

    LONG Q, LI J, CHEN C, et al. Optimization of iron and aluminum recovery in bauxite[J]. Journal of Iron and Steel Research International, 2020, 27(3): 310-318. doi: 10.1007/s42243-019-00360-5

    [35]

    李恒, 刘晓明, 赵喜彬, 等. 生物质松木锯末中低温还原高铁拜耳法赤泥[J]. 工程科学学报, 2017, 39(9): 1331-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201709005.htm

    [36]

    LIU Y, ZHAO B, TANG Y, et al. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite[J]. Thermochimica Acta, 2014, 588: 11-15. doi: 10.1016/j.tca.2014.04.027

    [37]

    LI X, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1342-1347. doi: 10.1016/S1003-6326(08)60447-1

    [38]

    LIU X, GAO P, YUAN S, et al. Clean utilization of high-iron red mud by suspension magnetization roasting[J]. Minerals Engineering, 2020, 157: 106553. doi: 10.1016/j.mineng.2020.106553

    [39]

    GRUDINSKY P, ZINOVEEV D, PANKRATOV D, et al. Influence of Sodium Sulfate Addition on Iron Grain Growth during Carbothermic Roasting of Red Mud Samples with Different Basicity[J]. Metals, 2020, 10(12): 1571. doi: 10.3390/met10121571

    [40]

    杨帆, 张涛, 谢刚, 等. 不同添加剂对某铝土矿拜耳法溶出性能的研究[J]. 有色金属工程, 2018, 8(6): 51-55. doi: 10.3969/j.issn.2095-1744.2018.06.011

    [41]

    CHUN T. Recovery of iron from red mud by high-temperature reduction of carbon-bearing briquettes[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2017, 117(4): 361-364. doi: 10.17159/2411-9717/2017/v117n4a7

    [42]

    LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation[J]. Metals, 2016, 6(4): 88. doi: 10.3390/met6040088

    [43]

    张洋洋, 吴雪兰, 陈意帆, 等. 某铁精矿浮选脱硫探究试验[J]. 科技视界, 2020(28): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ202028048.htm

    [44]

    WANG K, LIU Y, ZHANG T, et al. Investigation of the smelting reduction mechanism and of iron extraction from high-iron red mud[J]. Materials Research Express, 2020, 7(12): 126514 (11pp). . doi: 10.1088/2053-1591/abd137

    [45]

    范艳青, 朱坤娥, 蒋训雄. 赤泥中铁资源的回收利用研究[J]. 有色金属(冶炼部分), 2019(9): 72-76. doi: 10.3969/j.issn.1007-7545.2019.09.013

    [46]

    VALEEV D, ZINOVEEV D, KONDRATIEV A, et al. Reductive smelting of neutralized red mud for Iron recovery and produced pig Iron for heat-resistant castings[J]. Metals, 2020, 10(1): 32. http://www.researchgate.net/publication/338140043_Reductive_Smelting_of_Neutralized_Red_Mud_for_Iron_Recovery_and_Produced_Pig_Iron_for_Heat-Resistant_Castings

    [47]

    PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99: 8-18. doi: 10.1016/j.mineng.2016.09.012

    [48]

    ZHANG X, ZHOU K, LEI Q, et al. Stripping of Fe(Ⅲ) from Aliquat 336 by NaH2PO4: implication for rare-earth elements recovery from red mud[J]. Separation science and technology, 2021, 56(2): 301-309. doi: 10.1080/01496395.2020.1713814

    [49]

    ZHANG X, ZHOU K, WU Y, et al. Separation and recovery of iron and scandium from acid leaching solution of red mud using D201 resin[J]. Journal of Rare Earths, 2020, 38(12): 1322-1329. doi: 10.1016/j.jre.2019.12.005

    [50]

    薛真, 薛彦辉, 王力. 拜耳法赤泥中铝铁的盐酸浸出过程研究[J]. 矿产综合利用, 2018(6): 139-143. doi: 10.3969/j.issn.1000-6532.2018.06.029

    [51]

    宁凌峰, 何德文, 陈伟, 等. 赤泥中硫酸选择性浸出铁、钪及动力学研究[J]. 矿冶工程, 2019, 39(3): 81-84. doi: 10.3969/j.issn.0253-6099.2019.03.020

    [52]

    YANG Y, WANG X, WANG M, et al. Recovery of iron from red mud by selective leach with oxalic acid[J]. Hydrometallurgy, 2015, 157: 239-245. doi: 10.1016/j.hydromet.2015.08.021

    [53]

    ZHU X, NIU Z, LI W, et al. A novel process for recovery of aluminum, iron, vanadium, scandium, titanium and silicon from red mud[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103528. doi: 10.1016/j.jece.2019.103528

  • 加载中

(2)

计量
  • 文章访问数:  2608
  • PDF下载数:  168
  • 施引文献:  0
出版历程
收稿日期:  2021-04-15
刊出日期:  2021-06-25

目录