离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征

徐春丽, 刘斯文, 魏吉鑫, 黄园英, 马嘉宝, 曾普胜, 李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征[J]. 矿产保护与利用, 2021, 41(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2021.04.001
引用本文: 徐春丽, 刘斯文, 魏吉鑫, 黄园英, 马嘉宝, 曾普胜, 李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征[J]. 矿产保护与利用, 2021, 41(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2021.04.001
XU Chunli, LIU Siwen, WEI Jixin, HUANG Yuanying, MA Jiabao, ZENG Pusheng, LI Xuguang. Geochemical Characteristics of Rare Earth and Heavy Metal Elements in Ion-type Rare Earth Mining Area and Surrounding Soil[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2021.04.001
Citation: XU Chunli, LIU Siwen, WEI Jixin, HUANG Yuanying, MA Jiabao, ZENG Pusheng, LI Xuguang. Geochemical Characteristics of Rare Earth and Heavy Metal Elements in Ion-type Rare Earth Mining Area and Surrounding Soil[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2021.04.001

离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征

  • 基金项目:
    中国地质调查局地质调查项目(DD20190703)
详细信息
    作者简介: 徐春丽(1995-), 女, 新疆哈密人, 硕士, 主要从事矿山环境和地球化学方面的研究工作, E-mail: 2216307746@qq.com
    通讯作者: 李旭光(1982-), 男, 黑龙江齐齐哈尔人, 硕士, 高级工程师, 主要从事矿山地质环境方向研究, E-mail: john2011@163.com
  • 中图分类号: X53

Geochemical Characteristics of Rare Earth and Heavy Metal Elements in Ion-type Rare Earth Mining Area and Surrounding Soil

More Information
  • 20世纪60年代末中国离子型稀土矿在江西赣州首次发现并开采,在长期开采过程中对矿区及周边水土的生态环境问题产生了持续影响,本文选择赣南足洞离子型稀土矿及其周边地区进行了系统的土壤地球化学调查和风险评价。结果表明,土壤中重稀土含量明显高于轻稀土,其中Y含量是全国背景值(22.90 μg/g)的7.2倍,占比最高;地累积指数评价Igeo均值显示HREE和Sm分别有77.44%和99.55%为无污染至中等污染,95.92%的LREE为无污染;重金属除Pb处于轻度-中等污染水平外,As、Cd、Cr、Cu、Hg、Zn、Ni元素均为无污染,与农用地污染风险筛选值相比,样品中重金属的超标率为7.35%,区内土壤重金属生态风险低。统计结果显示稀土含量与重金属污染具有较好的相关性,花岗岩风化壳地质背景对稀土、重金属Pb的控制占主导地位,意味着重稀土含量越高,Pb污染可能越大,因此,在矿山土壤修复中需重视Pb元素的地球化学特征与分布,采用合理的修复技术和手段。

  • 加载中
  • 图 1  赣州足洞稀土矿区采样点位置图

    Figure 1. 

    图 2  稀土元素地累积指数箱线图

    Figure 2. 

    图 3  土壤剖面XTP83-1(矿区)和XTP40-1(非矿区)稀土元素地累积指数值在各污染等级中的占比

    Figure 3. 

    图 4  足洞稀土矿区及周边土壤中重金属环境质量状况

    Figure 4. 

    图 5  土壤剖面XTP83-1(矿区)和XTP40-1(非矿区)重金属元素地累积指数值在各污染等级中的占比

    Figure 5. 

    图 6  足洞稀土矿区及周边土壤中稀土与重金属元素聚类谱系(R型)

    Figure 6. 

    图 7  足洞稀土矿区及周边表层土壤样品主成分分析碎石图

    Figure 7. 

    图 8  足洞稀土矿区及周边土壤表层样品主成分分析(a)PC1-2,(b)PC3-4载荷投影图

    Figure 8. 

    图 9  龙南稀土矿区及周边土壤中Pb等值线图

    Figure 9. 

    图 10  Pb和∑REE在矿区及非矿区土壤剖面的岩性和含量对比图

    Figure 10. 

    表 1  地累积指数(Igeo)级别划分

    Table 1.  Classification for index of geo-accumulation

    地累积指数(Igeo) 分级 污染程度
    Igeo≤0 0 无污染
    0 < Igeo≤1 1 轻度—中等污染
    1 < Igeo≤2 2 中等污染
    2 < Igeo≤3 3 中等—强污染
    3 < Igeo≤4 4 强污染
    4 < Igeo≤5 5 强—极严重污染
    5 < Igeo≤10 6 极严重污染
    下载: 导出CSV

    表 2  足洞矿区及周边土壤中稀土元素含量统计

    Table 2.  Statistics of rare earth elements in soil and surrounding area of Zudong mining area

    元素 最小值 最大值 平均值 中位数 标准差 变异系数 江西表层土壤背景值 全国土壤背景值
    La 0 279.09 23.16 20.36 23.11 1 45.00 39.7
    Ce 0 338.25 42.55 37.97 37.12 0.87 79.9 68.4
    Pr 1.14 56.07 8.69 8.26 3.86 0.44 10.34 7.17
    Nd 5.79 195.62 39.35 39.54 14.51 0.37 33.33 26.4
    Sm 2.48 99.81 15.74 16.28 7.34 0.47 6.64 5.22
    Eu 0 6.04 0.61 0.5 0.67 1.1 1.02 1.03
    Gd 1.98 134.17 19.97 20.69 10.52 0.53 6.01 4.6
    Tb 0.33 29.1 4.23 4.41 2.44 0.58 0.9 0.63
    Dy 2.01 197.81 28.96 29.81 17.01 0.59 6.27 4.13
    Ho 0.4 38.26 5.83 6.1 3.43 0.59 1.22 0.87
    Er 1.22 108.9 16.23 16.95 9.55 0.59 3.9 2.54
    Tm 0.22 20.03 2.72 2.84 1.63 0.6 0.49 0.37
    Lu 0.28 22.98 2.71 2.81 1.67 0.62 0.51 0.36
    Y 8.37 1091.77 164.92 171.5 98.84 0.6 34.2 22.9
    ∑REE 86.64 2512.59 392.19 401.71 163.72 0.42 228.9 187.6
    LREE 41.89 834.04 130.1 119.27 71.14 0.55 176.12 143.2
    HREE 16.41 1781.96 262.09 273.77 155.01 0.59 55.88 37.2
    $\frac{{LREE}}{{HREE}}$ 0.14 5.02 0.96 0.46 1.13 1.18 - -
        注:元素含量单位为μg/g,∑REE为不含Pm、Sc的15个稀土元素的总量,LREE为轻稀土元素La~Eu,HREE为Gd~Lu+Y,全国土壤背景和江西省土壤背景参考《中国土壤元素背景值》[32]
    下载: 导出CSV

    表 3  足洞矿区及周边土壤中重金属含量统计

    Table 3.  Statistics of heavy metal contents in soil and surrounding area of Zudong mining area

    元素 最小值 最大值 平均值 中位数 标准差 变异系数 赣州市表层土壤背景值 江西省表层土壤背景值 样品数
    Cd 0.02 1.12 0.13 0.09 0.13 0.98 0.09 0.11 449
    Hg 0.00 3.92 0.09 0.06 0.28 3.14 0.06 0.08
    As 0.85 81.24 8.55 5.45 10.04 1.17 8.85 14.90
    Pb 12.01 2 164.00 83.60 54.14 116.95 1.40 34.19 32.30
    Cr 2.31 688.00 46.97 28.70 61.49 1.31 34.56 45.90
    Cu 2.04 129.76 18.90 13.93 17.06 0.90 15.17 20.30
    Ni 0.59 334.22 18.46 9.97 27.26 1.48 12.35 18.90
    Zn 18.83 198.60 82.66 80.09 29.90 0.36 58.05 69.40
        注:元素含量单位为μg/g。
    下载: 导出CSV

    表 4  重金属元素地累积指数分级频率分布表

    Table 4.  Graded frequency distribution table of geo-accumulation index of heavy metals

    分级 地累积指数 污染程度 As Cd Cr Cu Hg Pb Zn Ni
    0 Igeo≤0 无污染 93.32 77.51 74.16 77.73 89.31 46.33 69.49 78.84
    1 0 < Igeo≤1 轻度-中等污染 4.68 17.15 22.05 20.27 9.13 23.39 29.40 16.93
    2 1 < Igeo≤2 中等污染 2.00 3.56 2.45 1.78 1.56 24.28 1.11 3.12
    3 2 < Igeo≤3 中等-强污染 0.00 1.78 1.11% 0.22 0.00 5.57 0.00 0.89
    4 3 < Igeo≤4 强污染 0.00 0.00 0.22 0.00 0.00 0.22 0.00 0.22
    5 4 < Igeo≤5 强-极严重污染 0.00 0.00 0.00 0.00 0..00 0.00 0.00 0.00
    6 5 < Igeo≤10 极严重污染 0.00 0.0 0.00 0.00 0.00 0.0 0.00 0.00
      注:元素单位为百分比(%)。
    下载: 导出CSV

    表 5  华南地区不同时期花岗岩重金属元素平均含量[42]

    Table 5.  Average content of heavy metal elements in granite of South China in different periods

    元素 加里东期 海西期 印支期 燕山期
    Pb/(μg·g-1) 37 36 78 54
    下载: 导出CSV

    表 6  中国不同构造单元花岗岩类的元素丰度

    Table 6.  Element abundance of granitoids in different tectonic units in China

    单元 Nc Ns Pb/(μg·g-1)
    华南-右江造山带 172 1220 32
    天山-兴安造山系 138 1259 19
    中朝准地台 196 1883 23
    昆仑-祁连-秦岭造山带 94 716 28
    滇藏造山系 68 343 22
    扬子准地台 89 643 27
    喜马拉雅造山带 10 15 17
        注:数据引自史长义等[43],2007。Nc为组合样数,Ns为采集样品数。
    下载: 导出CSV
  • [1]

    赖丹, 吴一丁. 南方离子型稀土产业发展现状、问题及出路——以赣州为例[J]. 稀土, 2019, 243(4): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201904018.htm

    [2]

    邓国庆, 杨幼明. 离子型稀土矿开采提取工艺发展述评[J]. 稀土, 2016, 37(3): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201603026.htm

    [3]

    宋祥兰, 王兰英, 邝先松, 等. 赣南废弃稀土矿区植被恢复模式试验[J]. 中南林业科技大学学报, 2015, 35(6): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201506011.htm

    [4]

    YANY X J, LIN A, LI X L, et al. China's ion-adsorption rare earth resources, mining consequences and preservation[J]. Environmental Development, 2013, 8: 131-136. doi: 10.1016/j.envdev.2013.03.006

    [5]

    刘斯文, 黄园英, 朱晓华, 等. 离子型稀土采矿对矿山及周边水土环境的影响[J]. 环境科学与技术, 2015, 38(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201506005.htm

    [6]

    HUA S Y, TAO M L, QING S L, et al. Compound leaching behavior and regularity of ionic rare earth ore[J]. Powder Technology, 2018, 333: 106-114. doi: 10.1016/j.powtec.2018.04.010

    [7]

    周夏飞, 朱文泉, 马国霞, 等. 江西省赣州市稀土矿开采导致的水土保持价值损失评估[J]. 自然资源学报, 2016, 31(6): 982-993. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201606008.htm

    [8]

    陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm

    [9]

    高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201112039.htm

    [10]

    王秀丽, 张哲源, 李恒凯. 离子型稀土矿开采的环境影响及治理措施[J]. 国土与自然资源研究, 2020(2): 20-22. doi: 10.3969/j.issn.1003-7853.2020.02.006

    [11]

    金姝兰, 黄益宗. 稀土元素对农田生态系统的影响研究进展[J]. 生态学报, 2013, 33(16): 4836-4845. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201316003.htm

    [12]

    VERA H, MONTSERRAT G, ELENA M T, et al. Measurement of cerium in human breast milk and blood samples[J]. Journal of Trace elements in Medicine and Biology, 2010, 24(3): 193-199. doi: 10.1016/j.jtemb.2010.03.001

    [13]

    RIM K T, KOO K H, PARK J S. Toxicological evaluations of rare earths and their health impacts to workers: a literature review[J]. Safety and Health at Work, 2013, 4(1): 12-26. doi: 10.5491/SHAW.2013.4.1.12

    [14]

    刘莉, 戴纪强, 志强, 等. 稀土对人体健康损害研究进展[J]. 中国职业医学, 2019, 46(5): 625-627+632. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYX201905028.htm

    [15]

    LIANG T, LI K X, WANG L Q. State of rare earth elements in different environmental components in mining areas of China[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1499-1513. doi: 10.1007/s10661-013-3469-8

    [16]

    ISMAIL B, REDZUWAN Y, CHUA R S, et al. Radiological impacts of the amang processing industry on neighbouring residents[J]. Applied Radiation and Isotopes, 2001, 54(3): 393-397. doi: 10.1016/S0969-8043(00)00106-8

    [17]

    GWENZI W, MAUGORI L, DANHA C, et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants[J]. Science of the Total Environment, 2018, 636: 299-313. doi: 10.1016/j.scitotenv.2018.04.235

    [18]

    郭钟群, 赵奎, 金解放, 等. 离子型稀土矿环境风险评估及污染治理研究进展[J]. 稀土, 2019, 40(3): 115-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201903017.htm

    [19]

    李小飞, 陈志彪, 陈志强, 等. 南方稀土采矿地土壤和蔬菜重金属含量及其健康风险评价[J]. 水土保持学报, 2013, 27(1): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201301031.htm

    [20]

    闫振丽. 离子型稀土矿开采过程中铅活化过程的研究[D]. 北京: 中国地质大学(北京), 2015.

    [21]

    张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202005011.htm

    [22]

    师艳丽, 张萌, 姚娜, 等. 江西定南县离子型稀土尾矿周边水体氮污染状况与分布特征[J]. 环境科学研究, 2020, 33(1): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202001013.htm

    [23]

    温晓倩, 梁成华, 姜彬慧, 等. 我国土壤环境质量标准存在问题及修订建议[J]. 广东农业科学, 2010, 37(3): 89-94. doi: 10.3969/j.issn.1004-874X.2010.03.029

    [24]

    周彩云, 张嵚, 赵小敏, 等. 赣南某原地浸析稀土尾矿复垦前后土壤质量变化[J]. 农业资源与环境学报, 2019, 36(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201901013.htm

    [25]

    HAZZEMAN, HARIS, JUEN L, et al. Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. [J]. Environmental geochemistry and health, 2017, 39: 1259-1271. doi: 10.1007/s10653-017-9971-0

    [26]

    滕彦国, 庹先国, 倪师军, 等. 应用地质累积指数评价沉积物中重金属污染: 选择地球化学背景的影响[J]. 环境科学与技术, 2002(2): 7-9+48. doi: 10.3969/j.issn.1003-6504.2002.02.003

    [27]

    LIU S W, LIU X D, TAN K Y, et al. Characteristics of soil pollution caused by mining in ion-absorbed rare earth mines and crucial issues of the polluted soil restoration: a case study of longnan rare earth mines[J]. South China, 2014, 3248: 2564-2569. http://www.scientific.net/AMR.955-959.2564

    [28]

    陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202006041.htm

    [29]

    杨忠芳, 余涛, 冯海艳, 等. 区域生态地球化学评价数据的统计方法[J]. 地质通报, 2007(11): 1405-1412. doi: 10.3969/j.issn.1671-2552.2007.11.002

    [30]

    MULLER G. Index of geoaccumulation in sediments of the rhine river[J]. GeoJournal, 1969, 2(3): 109-118. http://www.researchgate.net/publication/303060644_Index_of_geoaccumulation_in_sediments_of_the_Rhine_River

    [31]

    陈翠华, 倪师军, 何彬彬, 等. 江西德兴矿集区水系沉积物重金属污染的时空对比[J]. 地球学报, 2008(5): 639-646. doi: 10.3321/j.issn:1006-3021.2008.05.015

    [32]

    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

    [33]

    池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007(6): 641-650. doi: 10.3321/j.issn:1000-4343.2007.06.001

    [34]

    陶继华, 李武显, 李献华, 等. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J]. 中国科学: 地球科学, 2013, 43(5): 770-788. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201305008.htm

    [35]

    JIANG S Y, HUIMIN S, XIONG Y, et al. Spatial-temporal distribution, geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China[J]. Acta Geologica Sinica(English Edition), 2020, 94(6): 1757-1773.

    [36]

    KUMAR M, GOSWAMI R, AWASTHI N, et al. Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India[J]. Chemosphere, 2019, 237: 124477-. doi: 10.1016/j.chemosphere.2019.124477

    [37]

    王慧, 简绍勇, 李娟, 等. 三种统计分析方法在数学建模中的应用浅谈[J]. 科学咨询(教育科研), 2020(10): 95-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KXZK202010075.htm

    [38]

    刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1): 270-279. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201601040.htm

    [39]

    王幼奇, 白一茹, 王建宇. 引黄灌区不同尺度农田土壤重金属空间分布及污染评价: 以银川市兴庆区为例[J]. 环境科学, 2014, 35(7): 2714-2720. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201407043.htm

    [40]

    中国科学院贵阳地球化学研究所. 华南花岗岩类的地球化学[M]. 北京: 科学出版社, 1979.

    [41]

    史长义, 迟清华, 冯斌, 等. 中国花岗岩类地球化学图的多元素区域分布模式研究[J]. 地质论评, 2015, 61(2): 417-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201502020.htm

    [42]

    何纪力, 徐光炎, 朱惠民, 等. 江西省土壤环境背景值研究[M]. 北京: 中国环境科学出版社, 2006.

    [43]

    史长义, 鄢明才, 迟清华. 中国不同构造单元花岗岩类元素丰度及特征[J]. 地质学报, 2007(01): 47-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200701006.htm

    [44]

    杨主明. 江西龙南花岗岩稀土风化壳中黏土矿物的研究[J]. 地质科学, 1987(1): 70-80+103.

    [45]

    房增强. 铅锌矿区土壤重金属污染特征及稳定化研究[D]. 北京: 中国矿业大学, 2016.

    [46]

    王昌宇. 湖南典型地区土壤中铅等元素污染来源探讨[D]. 北京: 中国地质大学, 2016.

    [47]

    李广云, 曹永富, 赵书民, 等. 土壤重金属危害及修复措施[J]. 山东林业科技, 2011, 41(6): 96-101. doi: 10.3969/j.issn.1002-2724.2011.06.031

  • 加载中

(10)

(6)

计量
  • 文章访问数:  1939
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2021-07-02
刊出日期:  2021-08-25

目录