Investigation on the Effect of Surface Roughness on the Adhesion of Water Droplets on Calcite Surface
-
摘要:
以方解石为研究对象, 以表面粗糙度为切入点, 探讨了表面粗糙度对水滴在药剂作用前后方解石表面黏附的影响, 并比较了测量黏附力和计算黏附力。试验结果表明: 天然方解石表面为亲水性表面; 随着表面粗糙度的增加, 水滴在天然方解石表面的接触角减小, 基底直径和黏附力均增加。相反, 在pH值为10时, 与浓度为30 mg/L的油酸钠溶液作用后, 方解石表面变为疏水性表面; 随着表面粗糙度的增加, 水滴在药剂作用后的方解石表面的接触角增加、基底直径和黏附力均减小。同时, 测量黏附力和计算黏附力基本吻合。因而, 借助表面粗糙度调控可改变水滴在方解石表面的黏附特性, 从而可为表面粗糙度调控方解石的可浮性提供借鉴。
Abstract:In this paper, calcite was selected as the research object, and surface roughness was taken as the key point, the effect of surface roughness on the adhesion of water droplets on calcite surface before and after conditioning with sodium oleate was investigated. In addition, the measured adhesive force and the calculated adhesive force were compared. Experimental results revealed that the surface of natural calcite was hydrophilic; with the increase of surface roughness, the contact angle of water droplets on the surface of natural calcite decreased while both the base diameter and the adhesion force increased. However, the surface of calcite after conditioning with 30 mg/L NaOL at pH value of 10 became hydrophobic; with the increase of surface roughness, the contact angle of water droplets on the conditioned surface increased while both the base diameter and the adhesive force decreased. Meanwhile, the measured adhesive force agreed well with the calculated force. Therefore, the adhesion characteristics of water droplets on calcite surface could be regulated by controlling surface roughness, which could provide a reference for the regulation of the floatability of calcite by surface roughness.
-
Key words:
- calcite /
- surface roughness /
- adhesion force /
- floatability
-
表 1 方解石化学多元素分析结果
Table 1. The chemical element analysis results of calcite
/% 成分 TFe FeO SiO2 Al2O3 MgO CaO 含量 0.01 - 0.04 0.01 - 55.88 表 2 经过四个阶段的抛光打磨后方解石平面的表面粗糙度参数
Table 2. Surface roughness parameters for calcite surfaces after four stages of polishing and grinding
抛光打磨介质 Rq/nm Ra/nm RSA 120目砂纸 203±30 149±21 1.092±0.039 400目砂纸 125±20 99±14 1.065±0.015 1 200目砂纸 27±2 20±1 1.028±0.002 1 μm金刚石 1.8±0.3 1.6±0.2 1.002±0.000 表 3 光滑天然方解石表面上的计算接触角
Table 3. The calculated contact angle on a smooth natural calcite surface
Rq/nm RSA θW /° θS/° 203±40 1.092±0.039 22±2 32±3 125±30 1.065±0.015 23±0 30±1 27±2 1.028±0.002 24±2 27±2 1.8±0.3 1.002±0.000 25±2 25±2 表 4 水滴在天然方解石表面黏附时的测量力和计算力
Table 4. The measured and calculated forces for water droplet adhesion on natural calcite surfaces
点 Rq/nm 测量力/mN 计算力/mN 铺展 203±40 0.670±0.014 0.679±0.021 125±30 0.640±0.014 0.647±0.015 27±2 0.530±0.004 0.524±0.006 1.8±0.3 0.430±0.004 0.441±0.009 最大力 203±40 0.830±0.028 0.868±0.033 125±30 0.800±0.001 0.839±0.009 27±2 0.760±0.014 0.764±0.023 1.8±0.3 0.700±0.003 0.680±0.019 脱离 203±40 0.139±0.001 0.126±0.001 125±30 0.132±0.002 0.121±0.005 27±2 0.114±0.002 0.115±0.007 1.8±0.3 0.104±0.001 0.113±0.002 表 5 水滴在同30 mg/L NaOL作用后的方解石表面黏附的测量力和计算力
Table 5. The measured and calculated forces for water droplet adhesion on calcite surfaces after conditioning with 30 mg/L NaOL
点 Rq/nm 测量力/mN 计算力/mN 铺展 203±40 0.112±0.007 0.123±0.002 125±30 0.102±0.006 0.125±0.005 27±2 0.121±0.002 0.118±0.004 1.8±0.3 0.126±0.000 0.131±0.004 最大力 203±40 0.344±0.008 0.352±0.001 125±30 0.346±0.004 0.359±0.003 27±2 0.380±0.018 0.388±0.011 1.8±0.3 0.442±0.001 0.422±0.003 脱离 203±40 0.102±0.000 0.101±0.007 125±30 0.100±0.002 0.099±0.012 27±2 0.110±0.000 0.107±0.007 1.8±0.3 0.111±0.001 0.109±0.006 -
[1] SAMITSU Y. A study of silicon-wafer surface evaluation using atomic force microscopy[J]. Nanotechnology, 1993, 4(4): 236. doi: 10.1088/0957-4484/4/4/010
[2] CROLL S G. Surface roughness profile and its effect on coating adhesion and corrosion protection: A review[J]. Progress in Organic Coatings, 2020, 148: 105847. doi: 10.1016/j.porgcoat.2020.105847
[3] FENG D, ALDRICH C. A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding[J]. International Journal of Mineral Processing, 2000, 60(2): 115-129. doi: 10.1016/S0301-7516(00)00010-7
[4] GUVEN O, CELIK M S, DRELICH J W. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier[J]. Minerals Engineering, 2015, 79: 125-132. doi: 10.1016/j.mineng.2015.06.003
[5] TONG Z Y, LIU L, YUAN Z T, et al. The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J]. Minerals Engineering, 2021, 169: 106959. doi: 10.1016/j.mineng.2021.106959
[6] GUO Z M, YANG J G, WANG Y L. An investigation of continuous interaction process between air bubble and various roughness coal surfaces using microbalance[J]. Physicochemical Problems of Mineral Processing, 2020, 56(1): 11-23.
[7] XING Y W, ZHANG Y F, DING S H, et al. Effect of surface roughness on the detachment between bubble and glass beads with different contact angles[J]. Powder Technology, 2020, 361: 812-816. doi: 10.1016/j.powtec.2019.11.040
[8] ZHU Z L, WANG D H, YANG B, et al. Water droplets and air bubbles at magnesite nano-rough surfaces: Analysis of induction time, adhesion and detachment using a dynamic microbalance[J]. Minerals Engineering, 2020, 155: 106449. doi: 10.1016/j.mineng.2020.106449
[9] 朱诗曼, 李怡霏, 张喆怡, 等. 羟肟酸类捕收剂浮选金红石特性及其机理[J]. 矿产保护与利用, 2021, 41(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e
ZHU S M, LI Y F, ZHANG Z Y, et al. Flotation characteristics and mechanism of rutile with hydroxamic acid collectors[J]. Conservation and utilization of mineral resources, 2021, 41(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e
[10] 王雯雯, 马晓晓, 王宇斌, 等. 助磨剂EDTA在超细石膏粉体制备过程中的作用机制[J]. 矿产保护与利用, 2021, 41(4): 100-106. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e726be68-d366-465c-988d-a7b9542b2115
WANG W W, MA X X, WANG Y B, et al. Study on the effect mechanism of EDTA on the preparation of ultrafine gypsum powder[J]. Conservation and utilization of mineral resources, 2021, 41(4): 100-106. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e726be68-d366-465c-988d-a7b9542b2115
[11] 杨诚, 张晨, 李明阳, 等. 有机抑制剂在铁矿石反浮选中的应用研究进展[J]. 矿产保护与利用, 2021, 41(4): 141-149. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9d2b6f2f-b39d-464c-b187-99033020d3b1
YANG C, ZHANG C, LI M Y, et al. Research development of application of organic depressant in iron ore reverse flotation[J]. Conservation and utilization of mineral resources, 2021, 41(4): 141-149. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9d2b6f2f-b39d-464c-b187-99033020d3b1
[12] 印万忠, 唐远, 姚金, 等. 矿物浮选过程中的交互影响[J]. 矿产保护与利用, 2018(3): 55-60. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=05329d24-599b-4b35-ba99-89d8b432994d
YIN W Z, TANG Y, YAO J, et al. Interactive effects in mineral flotation process[J]. Conservation and Utilization of Mineral Resources, 2018(3): 55-60. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=05329d24-599b-4b35-ba99-89d8b432994d
[13] 王纪镇, 印万忠, 程雅芝, 等. 白钨矿浮选中方解石对磷酸钠抑制性能的影响及机理研究[J]. 矿产保护与利用, 2018(3): 77-80. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=667bd460-6dd8-4f2a-b60d-2d62aa406375
WANG J Z, YIN W Z, CHENG Y Z, et al. The mechanism and effect of calcite on the depressing effect of sodium phosphate in the scheelite flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 77-80. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=667bd460-6dd8-4f2a-b60d-2d62aa406375
[14] GAO Y S, GAO Z Y, SUN W, et al. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation[J]. Journal of Colloid and Interface Science, 2018, 512: 39-46. doi: 10.1016/j.jcis.2017.10.045
[15] ZHU Z L, LI Z, YIN W Z, et al. Snap-in interactions between water droplets and hematite/quartz surfaces with various roughness after conditioning with soluble starch and DDA using a dynamic microbalance[J]. Minerals Engineering, 2022, 177: 107358. doi: 10.1016/j.mineng.2021.107358
[16] ZHU Z L, JIANG Y H, WANG D H, et al. Droplet Characteristics at the Maximum Adhesion on Curved Surfaces[J]. Langmuir, 2021, 37(7): 2532-2540. doi: 10.1021/acs.langmuir.1c00011
[17] WANG D H, ZHU Z L, YANG B, et al. Nano-scaled Roughness Effect on Air Bubble-Hydrophilic Surface Adhesive Strength[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125228. doi: 10.1016/j.colsurfa.2020.125228
[18] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry Research, 1936, 28(8): 988-994.
[19] CASSIE A, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(1): 546-551.
[20] ZHU Z L, YIN W Z, WANG D H, et al. The role of surface roughness in the wettability and floatability of quartz particles[J]. Applied Surface Science, 2020, 527: 146799. doi: 10.1016/j.apsusc.2020.146799