表面粗糙度对水滴在方解石表面黏附的影响

朱张磊, 印万忠, 李振, 杨斌, 郭俊, 赵旭. 表面粗糙度对水滴在方解石表面黏附的影响[J]. 矿产保护与利用, 2022, 42(1): 8-14. doi: 10.13779/j.cnki.issn1001-0076.2022.01.002
引用本文: 朱张磊, 印万忠, 李振, 杨斌, 郭俊, 赵旭. 表面粗糙度对水滴在方解石表面黏附的影响[J]. 矿产保护与利用, 2022, 42(1): 8-14. doi: 10.13779/j.cnki.issn1001-0076.2022.01.002
ZHU Zhanglei, YIN Wanzhong, LI Zhen, YANG Bin, GUO Jun, ZHAO Xu. Investigation on the Effect of Surface Roughness on the Adhesion of Water Droplets on Calcite Surface[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 8-14. doi: 10.13779/j.cnki.issn1001-0076.2022.01.002
Citation: ZHU Zhanglei, YIN Wanzhong, LI Zhen, YANG Bin, GUO Jun, ZHAO Xu. Investigation on the Effect of Surface Roughness on the Adhesion of Water Droplets on Calcite Surface[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 8-14. doi: 10.13779/j.cnki.issn1001-0076.2022.01.002

表面粗糙度对水滴在方解石表面黏附的影响

  • 基金项目:
    国家自然科学基金项目(51874072, 52174239);国家自然科学基金-新疆联合基金(U2003133);陕西省自然科学基础研究计划(2022JQ-353)
详细信息
    作者简介: 朱张磊(1991-), 男, 河南陕县人, 讲师, 博士, 研究方向为界面润湿和浮选基础理论, E-mail: zhu3748@gmail.com
  • 中图分类号: TD91;TD923

Investigation on the Effect of Surface Roughness on the Adhesion of Water Droplets on Calcite Surface

  • 以方解石为研究对象, 以表面粗糙度为切入点, 探讨了表面粗糙度对水滴在药剂作用前后方解石表面黏附的影响, 并比较了测量黏附力和计算黏附力。试验结果表明: 天然方解石表面为亲水性表面; 随着表面粗糙度的增加, 水滴在天然方解石表面的接触角减小, 基底直径和黏附力均增加。相反, 在pH值为10时, 与浓度为30 mg/L的油酸钠溶液作用后, 方解石表面变为疏水性表面; 随着表面粗糙度的增加, 水滴在药剂作用后的方解石表面的接触角增加、基底直径和黏附力均减小。同时, 测量黏附力和计算黏附力基本吻合。因而, 借助表面粗糙度调控可改变水滴在方解石表面的黏附特性, 从而可为表面粗糙度调控方解石的可浮性提供借鉴。

  • 加载中
  • 图 1  方解石XRD图谱

    Figure 1. 

    图 2  a,试验系统;b,典型的水滴在矿物表面的黏附力曲线

    Figure 2. 

    图 3  两种不同形状液滴的曲率半径(RD)、接触角(θ)和基底半径(r):a-凹面;b-凸面

    Figure 3. 

    图 4  抛光打磨后方解石表面的3维AFM图像示例:a,120目砂纸;b,400目砂纸;c,1200目砂纸;d,1 μm金刚石介质

    Figure 4. 

    图 5  水滴在天然方解石表面黏附时的形状参数:a,接触角;b,基底直径;c,曲率半径R;d,曲率半径D

    Figure 5. 

    图 6  水滴与30 mg/L NaOL作用后的方解石表面黏附时的形状参数:a-接触角;b-基底直径;c-曲率半径R;d-曲率半径D

    Figure 6. 

    表 1  方解石化学多元素分析结果

    Table 1.  The chemical element analysis results of calcite /%

    成分 TFe FeO SiO2 Al2O3 MgO CaO
    含量 0.01 - 0.04 0.01 - 55.88
    下载: 导出CSV

    表 2  经过四个阶段的抛光打磨后方解石平面的表面粗糙度参数

    Table 2.  Surface roughness parameters for calcite surfaces after four stages of polishing and grinding

    抛光打磨介质 Rq/nm Ra/nm RSA
    120目砂纸 203±30 149±21 1.092±0.039
    400目砂纸 125±20 99±14 1.065±0.015
    1 200目砂纸 27±2 20±1 1.028±0.002
    1 μm金刚石 1.8±0.3 1.6±0.2 1.002±0.000
    下载: 导出CSV

    表 3  光滑天然方解石表面上的计算接触角

    Table 3.  The calculated contact angle on a smooth natural calcite surface

    Rq/nm RSA θW θS
    203±40 1.092±0.039 22±2 32±3
    125±30 1.065±0.015 23±0 30±1
    27±2 1.028±0.002 24±2 27±2
    1.8±0.3 1.002±0.000 25±2 25±2
    下载: 导出CSV

    表 4  水滴在天然方解石表面黏附时的测量力和计算力

    Table 4.  The measured and calculated forces for water droplet adhesion on natural calcite surfaces

    Rq/nm 测量力/mN 计算力/mN
    铺展 203±40 0.670±0.014 0.679±0.021
    125±30 0.640±0.014 0.647±0.015
    27±2 0.530±0.004 0.524±0.006
    1.8±0.3 0.430±0.004 0.441±0.009
    最大力 203±40 0.830±0.028 0.868±0.033
    125±30 0.800±0.001 0.839±0.009
    27±2 0.760±0.014 0.764±0.023
    1.8±0.3 0.700±0.003 0.680±0.019
    脱离 203±40 0.139±0.001 0.126±0.001
    125±30 0.132±0.002 0.121±0.005
    27±2 0.114±0.002 0.115±0.007
    1.8±0.3 0.104±0.001 0.113±0.002
    下载: 导出CSV

    表 5  水滴在同30 mg/L NaOL作用后的方解石表面黏附的测量力和计算力

    Table 5.  The measured and calculated forces for water droplet adhesion on calcite surfaces after conditioning with 30 mg/L NaOL

    Rq/nm 测量力/mN 计算力/mN
    铺展 203±40 0.112±0.007 0.123±0.002
    125±30 0.102±0.006 0.125±0.005
    27±2 0.121±0.002 0.118±0.004
    1.8±0.3 0.126±0.000 0.131±0.004
    最大力 203±40 0.344±0.008 0.352±0.001
    125±30 0.346±0.004 0.359±0.003
    27±2 0.380±0.018 0.388±0.011
    1.8±0.3 0.442±0.001 0.422±0.003
    脱离 203±40 0.102±0.000 0.101±0.007
    125±30 0.100±0.002 0.099±0.012
    27±2 0.110±0.000 0.107±0.007
    1.8±0.3 0.111±0.001 0.109±0.006
    下载: 导出CSV
  • [1]

    SAMITSU Y. A study of silicon-wafer surface evaluation using atomic force microscopy[J]. Nanotechnology, 1993, 4(4): 236. doi: 10.1088/0957-4484/4/4/010

    [2]

    CROLL S G. Surface roughness profile and its effect on coating adhesion and corrosion protection: A review[J]. Progress in Organic Coatings, 2020, 148: 105847. doi: 10.1016/j.porgcoat.2020.105847

    [3]

    FENG D, ALDRICH C. A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding[J]. International Journal of Mineral Processing, 2000, 60(2): 115-129. doi: 10.1016/S0301-7516(00)00010-7

    [4]

    GUVEN O, CELIK M S, DRELICH J W. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier[J]. Minerals Engineering, 2015, 79: 125-132. doi: 10.1016/j.mineng.2015.06.003

    [5]

    TONG Z Y, LIU L, YUAN Z T, et al. The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J]. Minerals Engineering, 2021, 169: 106959. doi: 10.1016/j.mineng.2021.106959

    [6]

    GUO Z M, YANG J G, WANG Y L. An investigation of continuous interaction process between air bubble and various roughness coal surfaces using microbalance[J]. Physicochemical Problems of Mineral Processing, 2020, 56(1): 11-23.

    [7]

    XING Y W, ZHANG Y F, DING S H, et al. Effect of surface roughness on the detachment between bubble and glass beads with different contact angles[J]. Powder Technology, 2020, 361: 812-816. doi: 10.1016/j.powtec.2019.11.040

    [8]

    ZHU Z L, WANG D H, YANG B, et al. Water droplets and air bubbles at magnesite nano-rough surfaces: Analysis of induction time, adhesion and detachment using a dynamic microbalance[J]. Minerals Engineering, 2020, 155: 106449. doi: 10.1016/j.mineng.2020.106449

    [9]

    朱诗曼, 李怡霏, 张喆怡, 等. 羟肟酸类捕收剂浮选金红石特性及其机理[J]. 矿产保护与利用, 2021, 41(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e

    ZHU S M, LI Y F, ZHANG Z Y, et al. Flotation characteristics and mechanism of rutile with hydroxamic acid collectors[J]. Conservation and utilization of mineral resources, 2021, 41(4): 59-63. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=413f7969-972f-4776-8c76-2b7f21d5000e

    [10]

    王雯雯, 马晓晓, 王宇斌, 等. 助磨剂EDTA在超细石膏粉体制备过程中的作用机制[J]. 矿产保护与利用, 2021, 41(4): 100-106. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e726be68-d366-465c-988d-a7b9542b2115

    WANG W W, MA X X, WANG Y B, et al. Study on the effect mechanism of EDTA on the preparation of ultrafine gypsum powder[J]. Conservation and utilization of mineral resources, 2021, 41(4): 100-106. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=e726be68-d366-465c-988d-a7b9542b2115

    [11]

    杨诚, 张晨, 李明阳, 等. 有机抑制剂在铁矿石反浮选中的应用研究进展[J]. 矿产保护与利用, 2021, 41(4): 141-149. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9d2b6f2f-b39d-464c-b187-99033020d3b1

    YANG C, ZHANG C, LI M Y, et al. Research development of application of organic depressant in iron ore reverse flotation[J]. Conservation and utilization of mineral resources, 2021, 41(4): 141-149. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9d2b6f2f-b39d-464c-b187-99033020d3b1

    [12]

    印万忠, 唐远, 姚金, 等. 矿物浮选过程中的交互影响[J]. 矿产保护与利用, 2018(3): 55-60. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=05329d24-599b-4b35-ba99-89d8b432994d

    YIN W Z, TANG Y, YAO J, et al. Interactive effects in mineral flotation process[J]. Conservation and Utilization of Mineral Resources, 2018(3): 55-60. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=05329d24-599b-4b35-ba99-89d8b432994d

    [13]

    王纪镇, 印万忠, 程雅芝, 等. 白钨矿浮选中方解石对磷酸钠抑制性能的影响及机理研究[J]. 矿产保护与利用, 2018(3): 77-80. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=667bd460-6dd8-4f2a-b60d-2d62aa406375

    WANG J Z, YIN W Z, CHENG Y Z, et al. The mechanism and effect of calcite on the depressing effect of sodium phosphate in the scheelite flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 77-80. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=667bd460-6dd8-4f2a-b60d-2d62aa406375

    [14]

    GAO Y S, GAO Z Y, SUN W, et al. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation[J]. Journal of Colloid and Interface Science, 2018, 512: 39-46. doi: 10.1016/j.jcis.2017.10.045

    [15]

    ZHU Z L, LI Z, YIN W Z, et al. Snap-in interactions between water droplets and hematite/quartz surfaces with various roughness after conditioning with soluble starch and DDA using a dynamic microbalance[J]. Minerals Engineering, 2022, 177: 107358. doi: 10.1016/j.mineng.2021.107358

    [16]

    ZHU Z L, JIANG Y H, WANG D H, et al. Droplet Characteristics at the Maximum Adhesion on Curved Surfaces[J]. Langmuir, 2021, 37(7): 2532-2540. doi: 10.1021/acs.langmuir.1c00011

    [17]

    WANG D H, ZHU Z L, YANG B, et al. Nano-scaled Roughness Effect on Air Bubble-Hydrophilic Surface Adhesive Strength[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125228. doi: 10.1016/j.colsurfa.2020.125228

    [18]

    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry Research, 1936, 28(8): 988-994.

    [19]

    CASSIE A, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(1): 546-551.

    [20]

    ZHU Z L, YIN W Z, WANG D H, et al. The role of surface roughness in the wettability and floatability of quartz particles[J]. Applied Surface Science, 2020, 527: 146799. doi: 10.1016/j.apsusc.2020.146799

  • 加载中

(6)

(5)

计量
  • 文章访问数:  1415
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2021-12-28
刊出日期:  2022-02-25

目录