-
摘要:
煤矸石是煤炭开采加工过程产生的废弃物,其体量大、污染高和处理难,煤矸石含有大量的硅铝成分,是一种很宝贵的硅铝资源。气凝胶是一种结构可控的多孔轻质材料,它是目前已知体积密度最小的固体物质,可应用于保温隔热、催化和航天等多种领域。如何利用廉价的原材料制备高性能气凝胶从而降低生产成本,实现高值化利用是发展气凝胶材料的关键技术之一。阐述了煤矸石在煅烧活化和碱熔活化两种活化方式下硅铝的溶出效果,以及水洗和溶剂置换、离子液体萃取、阳离子交换树脂等对活化浸出溶液的几种除杂手段,并对比了一步溶出法和两步溶出法制备SiO2气凝胶和SiO2-Al2O3气凝胶的工艺方案以及最终产品性能,旨在为煤矸石的高值化利用及气凝胶的低成本制备提供参考。
Abstract:Coal gangue is the waste produced in the process of coal mining and processing. It has large volume, high pollution and difficult to deal with. Coal gangue contains a lot of silicon and aluminum components, so making full use of it will be a very valuable silicon and aluminum resources.Aerogel is a kind of porous lightweight material with controllable structure. It is a solid substance with the smallest known volume density. It can be used in many fields such as thermal insulation, catalysis and aerospace.How to use cheap raw materials to prepare high performance aerogel to reduce production cost and realize high value utilization is one of the key technologies to develop aerogel materials.The dissolution effect of silica and aluminum from coal gangue under calcination activation and alkali fusion activation, as well as several means of removing impurities from activated leaching solution, such as water washing, solvent replacement, ionic liquid extraction and cation exchange resin, are described.The process scheme and final product performance of SiO2 aerogel and SiO2-Al2O3 aerogel prepared by one-step dissolution method and two-step dissolution method were compared, aiming to provide reference for high-value utilization of coal gangue and low-cost preparation of aerogel.
-
Key words:
- coal gangue /
- aerogel /
- activation /
- purificatio /
- dissolution method
-
图 3 煤矸石碱活化制备SiO2和Al2O3工艺示意图[25]
Figure 3.
图 4 SiO2气凝胶的扫描电镜图(a) (b) (c)和气凝胶的疏水性能(d) (e) (f)[36]
Figure 4.
表 1 不同煤矸石的化学成分
Table 1. Chemical composition of different coal gangue
/% 煤矸石 SiO2含量 Al2O3含量 Fe2O3含量 CaO含量 MgO含量 山西 48~71 7~55 0.3~18.0 0.3~8.5 0.5~33.0 新疆 9.7~70.2 0.2~17.1 1.1~5.4 1.2~18.5 1.1~18.3 淮南 56.2~57.7 27.3~27.8 6.2~10.7 1.1~1.6 0.5~1.8 贵州 23.0~48.6 6.3~27.6 1.1~19.0 0.1~13.9 0.4~3.6 表 2 不同碱浸条件下SiO2浸出率
Table 2. Extraction rates of SiO2 under different alkaline leaching conditions
表 3 煤矸石为源制备气凝胶
Table 3. Preparation of aerogel from coal gangue
-
[1] 林漫亚. 煤矸石的综合利用[J]. 上海建材, 2018(2): 36-38. doi: 10.3969/j.issn.1006-1177.2018.02.014
[2] 秦建良. 煤矸石的危害及综合利用现状[J]. 广州化工, 2015, 43(4): 25-27. doi: 10.3969/j.issn.1001-9677.2015.04.011
[3] 李灿华, 向晓东, 刘思, 等. 煤矸石环境危害性及其资源化利用[J]. 武钢技术, 2016, 54(2): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-WGJS201602022.htm
[4] 李贞, 王俊章, 申丽明, 等. 煤矸石物化成分对其资源化利用的影响[J]. 洁净煤技术, 2020, 26(6): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202006004.htm
[5] 任根宽, 张克俭. 煤矸石提取氧化铝工艺研究[J]. 无机盐工业, 2010, 42(8): 54-56. doi: 10.3969/j.issn.1006-4990.2010.08.018
[6] YANG J, ZHANG X, LIU Y, et al. Synthesis of Ultrafine Silica Powder Using the Silica Source Alkali-Leached from Coal Gangue[J]. Integrated Ferroelectrics, 2015, 161(1): 10-17. doi: 10.1080/10584587.2015.1035198
[7] JIAYAN, LI, et al. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239.
[8] 史亚春, 李铁虎, 吕婧, 等. 气凝胶材料的研究进展[J]. 材料导报, 2013, 27(9): 20-24. doi: 10.3969/j.issn.1005-023X.2013.09.005
[9] 吴晓栋, 宋梓豪, 王伟, 等. 气凝胶材料的研究进展[J]. 南京工业大学学报: 自然科学版, 2020, 42(4): 405-451. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202004001.htm
[10] 罗燚, 姜勇刚, 冯军宗, 等. 常压干燥制备SiO2气凝胶复合材料研究进展[J]. 材料导报, 2018, 32(5): 780-787. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201805014.htm
[11] 李华鑫, 赵春林, 陈俊勇, 等. 氧化铝气凝胶研究进展[J]. 金属世界, 2018, 198(4): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSJ201804007.htm
[12] ALMEIDA C, GHICA M E, DURES L. An overview on alumina-silica-based aerogels[J]. Advances in Colloid and Interface Science, 2020, 282.
[13] 巢雄宇, 袁武华, 石清云, 等. SiO2掺杂Al2O3气凝胶改性研究[J]. 现代技术陶瓷, 2017, 38(2): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-XDTC201702004.htm
[14] 邢志祥, 汪李金, 钱辉, 等. Al2O3-SiO2气凝胶隔热材料的研究进展[J]. 安全与环境工程, 2018, 25(3): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201803030.htm
[15] 郝志飞, 张印民, 张永锋, 等. 准格尔地区煤矸石的矿物学分析和热活化研究[J]. 硅酸盐通报, 2016, 35(4): 1198-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201604035.htm
[16] XIAO J, LI FC, etal. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118-124. doi: 10.1016/j.hydromet.2015.04.018
[17] 杨正虎, 蔡会武, 张勋, 等. 晋城煤矸石制备聚合氯化铝的研究[J]. 非金属矿, 2012, 35(2): 31-32. doi: 10.3969/j.issn.1000-8098.2012.02.010
[18] 刘成龙, 夏举佩, 张永波. 酸浸提取煤矸石中氧化铝工艺优化及其动力学[J]. 过程工程学报, 2015, 15(4): 579-583. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201504007.htm
[19] 崔树军, 张庆甫, 张建云, 等. 煤矸石中提取铝的工艺探讨[J]. 非金属矿, 2010, 33(3): 25-27. doi: 10.3969/j.issn.1000-8098.2010.03.008
[20] 秦岭, 夏举佩, 张召述. 煤矸石酸渣制备水玻璃工艺研究[J]. 硅酸盐通报, 2011(6): 1420-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201106050.htm
[21] 范剑明. 高铝煤矸石铝硅分级提取试验研究[J]. 无机盐工业, 2019, 51(11): 65-68. doi: 10.11962/1006-4990.2019-0017
[22] 纪利春, 相亚军, 任根宽. 酸碱联合法从低温活化煤矸石提取硅铝铁[J]. 非金属矿, 2014, 37(3): 12-14. doi: 10.3969/j.issn.1000-8098.2014.03.004
[23] 余复幸, 夏举佩, 周新涛. 煤矸石酸浸渣干法制备水玻璃的研究[J]. 硅酸盐通报, 2014, 33(1): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201401038.htm
[24] 自桂芹, 夏举佩, 刘成龙, 等. 煤矸石酸浸渣-硫酸钠碳热法制备水玻璃的试验研究[J]. 非金属矿, 2015, 38(1): 55-58. doi: 10.3969/j.issn.1000-8098.2015.01.017
[25] HAN L, REN W, WANG B, et al. Extraction of SiO2and Al2O3 from coal gangue activated by supercritical water[J]. Fuel, 2019, 253(1): 1184-1192.
[26] MAHLOUJIFAR M, MANSOURNIA M, et al. Kaolinite fusion in carbonate media: KAlSiO4-NaAlSiO4 phasetransformations and morphological study[J]. Materials research express, 2019(6): 2053-1591.
[27] 胡芳华, 王万绪, 杨敢益, 等. 活化煤矸石离子溶出特性初探[J]. 煤炭转化, 2008, 31(4): 98-101. doi: 10.3969/j.issn.1004-4248.2008.04.025
[28] 崔莉, 郭彦霞, 曹丽琼, 等. 活化煤矸石酸浸过程中金属离子的溶出[J]. 煤炭转化, 2016, 39(3): 86-91. doi: 10.3969/j.issn.1004-4248.2016.03.017
[29] 陈伟, 凌轩, 李蒙蒙, 等. 高岭土制备铝掺杂SiO2气凝胶研究[J]. 武汉理工大学学报, 2017(10): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201710004.htm
[30] WU X, FAN M, MCLAUGHLIN J F, et al. A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique[J]. Powder Technology, 2018, 323: 310-322. doi: 10.1016/j.powtec.2017.10.022
[31] 孔德顺, 吴红. 煤矸石除杂及碱融活化制取硅酸钠的试验研究[J]. 无机盐工业, 2013, 45(8): 42-44. doi: 10.3969/j.issn.1006-4990.2013.08.014
[32] 崔莉. 煤矸石铁铝溶出动力学及离子液体萃取除铁研究[D]. 太原: 山西大学, 2016.
[33] LIU SW, WEI Q, CUI SP, et al. Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying[J]. Journal of Sol Gel Science & Technology, 2016, 78(1): 60-67.
[34] FEI S, LIU JX, SONG K, et al. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2010, 356(43): 2241-2246. doi: 10.1016/j.jnoncrysol.2010.08.005
[35] 张宁. SiO2-Al2O3气凝胶的制备及性能研究[D]. 武汉: 武汉理工大学, 2016.
[36] 李妍洁. 煤矸石制备块状SiO2气凝胶及其特性研究[D]. 西安: 西安科技大学, 2018.
[37] 朱金萌. 以煤矸石为硅源制备SiO2气凝胶材料及其性能研究[D]. 西安: 西安科技大学, 2015.
[38] ZHU P, ZHENG M, ZHAO S, et al. A novel environmental route to ambient pressure dried thermal insulating silica aerogel via recycled coal gangue[J]. Advances in Materials Science and Engineering, 2016, 3211: 1-9.
[39] 刘博, 刘墨祥, 陈晓平. 用废弃煤矸石制备高比表面积的SiO2-Al2O3二元复合气凝胶[J]. 化工学报, 2017, 68(5): 2096-2104. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201705043.htm
[40] 程倩, 王水利, 杜美利. 用煤矸石制备SiO2-Al2O3气凝胶的研究[C]. 北京: 中国科协年会, 2016.
[41] ZHU J, GUO S, LI X. Facile preparation of a SiO2-Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption[J]. RSC Advances, 2015, 5(125): 103656-103661. doi: 10.1039/C5RA20392A