黄铜矿浮选研究进展

张梅, 黄凌云, 蓝卓越, 胡博, 孙鑫. 黄铜矿浮选研究进展[J]. 矿产保护与利用, 2022, 42(2): 172-178. doi: 10.13779/j.cnki.issn1001-0076.2022.02.023
引用本文: 张梅, 黄凌云, 蓝卓越, 胡博, 孙鑫. 黄铜矿浮选研究进展[J]. 矿产保护与利用, 2022, 42(2): 172-178. doi: 10.13779/j.cnki.issn1001-0076.2022.02.023
ZHANG Mei, HUANG Lingyun, LAN Zhuoyue, HU Bo, SUN Xin. Research Progress of Chalcopyrite Flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 172-178. doi: 10.13779/j.cnki.issn1001-0076.2022.02.023
Citation: ZHANG Mei, HUANG Lingyun, LAN Zhuoyue, HU Bo, SUN Xin. Research Progress of Chalcopyrite Flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 172-178. doi: 10.13779/j.cnki.issn1001-0076.2022.02.023

黄铜矿浮选研究进展

  • 基金项目:
    国家自然科学基金项目(51964024);引进人才科研启动基金项目(KKSY201952020)
详细信息
    作者简介: 张梅(1997-),女,四川万源人,硕士研究生,主要从事矿物浮选理论,E-mail: meizhang2021@126.com
    通讯作者: 黄凌云(1978-),女,湖北钟祥人,博士,讲师,主要从事复杂矿物精细分选,E-mail: hly0510@126.com
  • 中图分类号: TD952.1;TD923

Research Progress of Chalcopyrite Flotation

More Information
  • 黄铜矿是提炼铜的主要矿物原料,不同地质作用产生的黄铜矿,因其晶体结构和共伴生矿物等自然属性不同,导致黄铜矿的可浮性呈现差异化,在概述了矿物选别因素矿物晶体结构、矿浆pH、矿浆电位、难免离子对黄铜矿可浮性影响的基础上,进一步阐述了黄铁矿、闪锌矿、方铅矿和非金属脉石矿物等共伴生矿物对黄铜矿浮选的影响,并简述了黄铜矿浮选捕收剂的研究进展。

  • 加载中
  • 图 1  黄铜矿晶体结构示意图

    Figure 1. 

    图 2  Fe-S(a)和Cu-S(b)体系的Eh-pH图[12]

    Figure 2. 

    图 3  酯-105(a)的化学结构和BL(b)的化学结构

    Figure 3. 

    图 4  BECTC(a)和BBCTC(b)的化学结构

    Figure 4. 

  • [1]

    陈代雄. 铜铅锌矿选矿新技术[M]. 北京: 冶金工业出版社, 2019.

    CHEN D X. New technology of copper-lead-zinc beneficiation[M]. Beijing: Metallurgical Industry Press, 2019.

    [2]

    朱阳戈, 陈建华, 柯宝霖, 等. 黄铜矿与孔雀石的电子结构及硫化作用的电化学研究[J]. 有色金属工程, 2018(4): 95-100. doi: 10.3969/j.issn.2095-1744.2018.04.019

    ZHU Y G, CHEN J H, KE B L, et al. Electrochemical study on the electronic structure and sulfidation of chalcopyrite and malachite[J]. Nonferrous Metals Engineering, 2018(4): 95-100. doi: 10.3969/j.issn.2095-1744.2018.04.019

    [3]

    MIKHLIN Y, TOMASHEVICH Y, TAUSON V, et al. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2[J]. Journal of Electron Spectroscopy & Related Phenomena, 2005, 142(1): 83-88. https://www.sciencedirect.com/science/article/pii/S0368204804003597

    [4]

    孙乾予, 印万忠, 宋振国. 影响典型铜矿物可浮性的晶体化学基因研究[J]. 金属矿山, 2020(6): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006008.htm

    SUN G Y, YIN W Z, SONG Z G. Study on crystal chemical gene affecting the floatability of typical copper minerals[J]. Metal Mines, 2020(6): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006008.htm

    [5]

    吴桂叶, 刘龙利, 张行荣, 等. 计算机辅助研究黄铜矿抑制剂的分子结构特征[J]. 有色金属(选矿部分), 2013(z1): 268-271+274. doi: 10.3969/j.issn.1671-9492.2013.z1.069

    WU G Y, LIU L L, ZHANG X R, et al. Computer-aided research on molecular structure characteristics of chalcopyrite inhibitors[J]. Nonferrous Metals (Mineral Processing), 2013(z1): 268-271+274. doi: 10.3969/j.issn.1671-9492.2013.z1.069

    [6]

    邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013.

    DENG J S. The release of chalcopyrite fluid inclusion components and their interaction with the relaxed surface[D]. Kunming: Kunming University of Science and Technology, 2013.

    [7]

    苏超, 刘殿文, 申培伦, 等. 黄铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020(9): 79-87. doi: 10.3969/j.issn.2095-1744.2020.09.013

    SU C, LIU D W, SHEN P L, et al. Research progress on electrochemical properties and flotation behavior of chalcopyrite and galena[J]. Nonferrous Metals Engineering, 2020(9): 79-87. doi: 10.3969/j.issn.2095-1744.2020.09.013

    [8]

    肖静晶. N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯对黄铜矿的浮选行为及吸附机理[J]. 中国有色金属学报, 2021, 31(8): 2247-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202108024.htm

    XIAO J J. Flotation behavior and adsorption mechanism of N-butoxypropyl-S-[2-(oximoyl)propyl] dithiocarbamate on chalcopyrite[J]. China Nonferrous Metals Chinese Journal, 2021, 31(8): 2247-2257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202108024.htm

    [9]

    黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3): 46-50+56. doi: 10.3969/j.issn.0253-6099.2021.03.011

    HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on copper and molybdenum flotation separation effect[J]. Mining and Metallurgy Engineering, 2021, 41(3): 46-50+56. doi: 10.3969/j.issn.0253-6099.2021.03.011

    [10]

    曾维能, 任浏祎, 曹雨琪, 等. 黄铜矿与磁黄铁矿浮选分离行为及机理研究[J]. 有色金属(选矿部分), 2020(6): 30-35. doi: 10.3969/j.issn.1671-9492.2020.06.006

    ZENG W N, REN L Y, CAO Y Q, et al. Research on the flotation separation behavior and mechanism of chalcopyrite and pyrrhotite[J]. Nonferrous Metals (Beneficiation), 2020(6): 30-35. doi: 10.3969/j.issn.1671-9492.2020.06.006

    [11]

    刘承鑫, 付金涛, 云霞. 矿浆pH值对硫化铅锌矿浮选的影响[J]. 现代矿业, 2017, 33(11): 105-107+116. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201711029.htm

    LIU C X, FU J T, YUN X. Effect of pulp pH value on flotation of lead-zinc sulfide ore[J]. Modern Mining, 2017, 33(11): 105-107+116. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201711029.htm

    [12]

    E. C TODD, D. M SHERMAN, J. A PURTON. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2137-2146. doi: 10.1016/S0016-7037(02)01371-6

    [13]

    孙水裕, 王淀佐, 李柏淡. 黄铜矿和黄铁矿无捕收剂浮选和分离的研究[J]. 中南矿冶学院学报, 1993(4): 466-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199304005.htm

    SUN S Y, WANG D Z, LI B D. Research on collector-free flotation and separation of chalcopyrite and pyrite[J]. Journal of Central South University of Mining and Metallurgy, 1993(4): 466-471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199304005.htm

    [14]

    耿连胜. 控制矿浆电位提高铜浮选回收率的研究[J]. 矿业快报, 2001(9): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200109006.htm

    GENG L S. Study on Controlling Slurry Potential to Improve Copper Flotation Recovery[J]. Mining Express, 2001(9): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200109006.htm

    [15]

    陈勇, 宋永胜, 刘爽, 等. 镍黄铁矿和黄铜矿无捕收剂电位调控浮选分离[J]. 金属矿山, 2012(2): 86-88+98. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201202027.htm

    CHEN Y, SONG Y S, LIU S, et al. Separation of pyrite and chalcopyrite by collector-free potential control flotation[J]. Metal Mines, 2012(2): 86-88+98. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201202027.htm

    [16]

    俞娟, 杨洪英, 范有静. 电位对天然黄铜矿表面膜层性质的影响(英文)[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1880-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSY201108033.htm

    YU J, YANG H Y, FAN Y J. Effect of electric potential on the properties of natural chalcopyrite surface film (English)[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1880-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSY201108033.htm

    [17]

    杨绵延, 马英强, 谢材, 等. 不同磨矿体系下新生阳离子存在行为及其对黄铜矿可浮性的影响[J]. 金属矿山, 2022(2): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202202016.htm

    YANG M Y, MA Y Q, XIE C, et al. Existence behavior of nascent cations under different grinding systems and their effects on chalcopyrite floatability[J]. Metal Mines, 2022(2): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202202016.htm

    [18]

    魏明安, 孙传尧. 矿浆中的难免离子对黄铜矿和方铅矿浮选的影响[J]. 有色金属, 2008(2): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200802022.htm

    WEI M A, SUN C Y. Influence of inevitable ions in pulp on flotation of chalcopyrite and galena[J]. Nonferrous Metals, 2008(2): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200802022.htm

    [19]

    盛洁, 刘全军, 董敬申, 等. 典型金属离子对黄铜矿浮选效果的影响研究进展[J/OL]. 应用化工, 2022: 1-7. DOI: 10.16581/j.cnki.issn1671-3206.20211129.003.

    SHENG J, LIU Q J, DONG J S, et al. Research progress on the effect of typical metal ions on chalcopyrite flotation effect[J/OL]. Applied Chemical Industry, 2022: 1-7. DOI: 10.16581/j.cnki.issn1671-3206.20211129.003.

    [20]

    王亮, 李育彪, 李万青. 不同价态杂质离子对黄铜矿浮选的影响机理研究[J]. 金属矿山, 2018(12): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812016.htm

    WANG L, LI Y B, LI W Q. Study on the influence mechanism of impurity ions of different valences on chalcopyrite flotation[J]. Metal Mines, 2018(12): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201812016.htm

    [21]

    谭欣, 孙传尧. 乙硫氮作捕收剂时无机调整剂加药顺序对典型硫化矿物浮选的影响[J]. 有色金属(选矿部分), 2021(5): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202105024.htm

    TAN X, SUN C Y. Influence of dosing sequence of inorganic regulators on the flotation of typical sulfide minerals when ethyl sulfide nitrogen is used as collector[J]. Non-ferrous Metals (Beneficiation), 2021(5): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202105024.htm

    [22]

    方夕辉, 张村, 夏艳圆. 不同因素对黄铜矿、黄铁矿浮选分离动力学影响[J]. 有色金属科学与工程, 2016, 7(6): 110-114+123. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201606019.htm

    FANG X H, ZHANG C, XIA Y Y. The influence of different factors on the flotation separation kinetics of chalcopyrite and pyrite[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 110-114+123. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201606019.htm

    [23]

    KE B L, CHEN J H. Influence of galvanic interaction between chalcopyrite and galenaon electrochemical and flotation behaviour of chalcopyrite[J]. Applied Surface Science, 2022, 573, 151475.

    [24]

    CLEMENT O, JONAS A, DANIEL F, et al. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour[J]. Advanced Powder Technology, 2013, 24(4): 801-809. https://www.sciencedirect.com/science/article/pii/S0921883113001210

    [25]

    RICHARD L, JIE L, CHEN X M, et al. Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion[J]. Minerals Engineering, 2022, 177, 107387.

    [26]

    WU J J, MA W K, WANG X J, et al. The effect of galvanic interaction between chalcopyrite and pyrite on the surface chemistry and collector adsorption: Flotation and DFT study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125377.

    [27]

    CLEMENT O, DANIEL F, JONAS A, et al. Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures[J]. International Journal of Mineral Processing, 2015, 134: 50-57. https://www.sciencedirect.com/science/article/pii/S0301751614001641

    [28]

    SHEN Z H, WEN S M, HAN G, et al. Selective depression mechanism of locust bean gum in the flotation separation of chalcopyrite from pyrite in a low-alkalinity media[J]. Minerals Engineering, 2021, 170, 107044.

    [29]

    龚明光, 等. 浮游选矿[M]. 北京: 冶金工业出版社, 1959.

    GONG M G. et al. Flotation beneficiation[M]. Beijing: Metallurgical Industry Press, 1959.

    [30]

    LAI H, DENG J S, WEN S M, et al. Homogenization phenomena of surface components of chalcopyrite and sphalerite during grinding processing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123601.

    [31]

    冯博, 郭宇涛, 王涛, 等黄原胶在黄铜矿和闪锌矿浮选分离中的作用及机理[J]. 中国有色金属学报, 2020, 30(5): 1202-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202005025.htm

    FENG B, GUO Y T, WANG T, et al. Effect and mechanism of xanthan gum in the flotation separation of chalcopyrite and sphalerite[J]. Chinese Journal of Nonferrous Metals, 2020, 30(5): 1202-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202005025.htm

    [32]

    ZHOU H, GENG L, Zhang Y, et al. Selective flotation separation of chalcopyrite and sphalerite by thermal pretreatment under air atmosphere[J]. Physicochemical Problems of Mineral Processing, 2021, 57(1): 305-314. https://www.sciencedirect.com/science/article/pii/S0927776504001894

    [33]

    M.K. YELLOJI RAO, K.A. NATARAJAN. Electrochemical effects of mineral-mineral interactions on the flotation of chalcopyrite and sphalerite[J]. International Journal of Mineral Processing, 1989, 27(3/4): 279-293. https://www.sciencedirect.com/science/article/pii/0301751689900690

    [34]

    唐林生, 黄开国, 王淀佐. 铜离子和硫化矿作用机理的研究[J]. 矿冶工程, 1989(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC198903006.htm

    TANG L S, HUANG K G, WANG D Z. Study on the interaction mechanism between copper ions and sulfide minerals[J]. Mining and Metallurgy Engineering, 1989(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC198903006.htm

    [35]

    赵珊茸. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2017.

    ZHAO S R. Crystallography and Mineralogy[M]. Beijing: Higher Education Press, 2017.

    [36]

    DONG Z L, JIANG T, XU B, et al. Density functional theory study on electronic structure of tetrahedrite and effect of natural impurities on its flotation property[J]. Minerals Engineering, 2021, 169, 106980.

    [37]

    赖浩. 黄铜矿和方铅矿浮选过程中的同质化效应研究[D]. 昆明: 昆明理工大学, 2021.

    LAI H. Study on the homogenization effect during the flotation process of chalcopyrite and galena[D]. Kunming: Kunming University of Science and Technology, 2021.

    [38]

    CHEN X M, Enrico Hadde, LIU S Q, et al. The effect of amorphous silica on pulp rheology and copper flotation[J]. Minerals Engineering, 2017, 11: 41-46. https://www.sciencedirect.com/science/article/pii/S0892687517302005

    [39]

    S. FARROKHPAY, B. NDLOVU. Effect of phyllosilicate minerals on the rheology, colloidal and flotation behaviour of chalcopyrite mineral[C]//Chemeca 2013: Australasian Conference on Chemical Engineering. Brisbane: 2013: 1-7.

    [40]

    RICARDO I. JELDRES, LINA URIBE, LUIS A. CISTERNAS, et al. The effect of clay minerals on the process of flotation of copper ores-A critical review[J]. Applied Clay Science, 2019, 170: 57-69.

    [41]

    李桂金, 赵平, 白志民. 蛇纹石表面特性[J]. 硅酸盐学报, 2017, 45(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201708022.htm

    LI G J, ZHAO P, BAI Z M. Surface Properties of Serpentine[J]. Journal of Silicates, 2017, 45(8): 1204-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201708022.htm

    [42]

    FENG B, ZHANG W P, Guo Y T, et al. Synergistic effect of acidified water glass and locust bean gum in the flotation of a refractory copper sulfide ore[J]. Journal of Cleaner Production, 2018, 202: 1077-1084. https://www.sciencedirect.com/science/article/pii/S0959652618325630

    [43]

    LU J W, SUN M J, YUAN Z T, et al. Innovative insight for sodium hexametaphosphate interaction with serpentine[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 35-41. https://www.sciencedirect.com/science/article/pii/S0927775718312329

    [44]

    YANG B, LIU J, WANG L, et al. Enhanced collection of chalcopyrite by styrene-butyl acrylate polymer nanospheres in the presence of serpentine[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128408.

    [45]

    朱永谊. 黄铜矿浮选工艺及捕收剂研究进展[J]. 世界有色金属, 2020(18): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202018028.htm

    ZHU Y Y. Research progress on chalcopyrite flotation process and collectors[J]. World Nonferrous Metals, 2020(18): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202018028.htm

    [46]

    黄真瑞, 钟宏, 王帅, 等. 黄铜矿浮选工艺及捕收剂研究进展[J]. 应用化工, 2013, 42(11): 2048-2051+2055. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201311035.htm

    HUANG Z R, ZHONG H, WANG S, et al. Research progress on chalcopyrite flotation process and collectors[J]. Applied Chemical Industry, 2013, 42(11): 2048-2051+2055. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201311035.htm

    [47]

    孙传尧. 选矿工程师手册(第1册)[M]. 北京: 冶金工业出版社, 2015: 518-529.

    SUN C Y. Handbook of mineral processing engineers (volume 1)[M]. Beijing: Metallurgical Industry Press, 2015: 518-529.

    [48]

    孙乾予. 铜矿物的晶体化学基因特征及浮选机理研究[D]. 沈阳: 东北大学, 2019.

    SUN G Y. Crystal chemical genetic characteristics and flotation mechanism of copper minerals[D]. Shenyang: Northeastern University, 2019.

    [49]

    BU X Z, FENG Y Y, XUE J W, et al. Effective recovery of chalcopyrite at low temperatures using modified ester collector[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 296-306.

    [50]

    PEACE P. MKHONTO, ZHANG X R, LU L, et al. Unravelling the performance of oxycarbonyl-thiocarbamate collectors on chalcopyrite using first-principles calculations and micro-flotation recoveries[J]. Applied Surface Science, 2021, 563, 150332.

    [51]

    钟宏, 张湘予, 马鑫, 等. 酰氨基黄药的制备及其对黄铜矿、黄铁矿的浮选性能研究[J]. 矿产保护与利用, 2021, 41(2): 13-22. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c224e886-f769-43f4-a907-df9fc072e779

    ZHONG H, ZHANG X Y, MA X, et al. Preparation of amido xanthate and its flotation performance for chalcopyrite and pyrite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 13-22. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c224e886-f769-43f4-a907-df9fc072e779

  • 加载中

(4)

计量
  • 文章访问数:  1268
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2022-02-17
刊出日期:  2022-04-25

目录