硫化铅锌矿物浮选分离研究进展

刘洋, 童雄, 吕晋芳, 谢贤, 宋强, 范培强. 硫化铅锌矿物浮选分离研究进展[J]. 矿产保护与利用, 2022, 42(3): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.03.016
引用本文: 刘洋, 童雄, 吕晋芳, 谢贤, 宋强, 范培强. 硫化铅锌矿物浮选分离研究进展[J]. 矿产保护与利用, 2022, 42(3): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.03.016
LIU Yang, TONG Xiong, LV Jinfang, XIE Xian, SONG Qiang, FAN Peiqiang. Research Progress on Flotation Separation of Lead-zinc Sulfide Minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.03.016
Citation: LIU Yang, TONG Xiong, LV Jinfang, XIE Xian, SONG Qiang, FAN Peiqiang. Research Progress on Flotation Separation of Lead-zinc Sulfide Minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2022.03.016

硫化铅锌矿物浮选分离研究进展

详细信息
    作者简介: 刘洋(1998-), 男, 硕士研究生, 研究方向为浮选理论与工艺
    通讯作者: 童雄(1965-), 男, 博士, 教授, 研究方向为复杂多金属难处理矿产资源综合利用
  • 中图分类号: TD952.2;TD952.3

Research Progress on Flotation Separation of Lead-zinc Sulfide Minerals

More Information
    Corresponding author: TONG Xiong
  • 铅锌资源是我国的战略矿产资源, 浮选法是硫化铅锌矿物常用的分离手段。作者通过文献分析, 介绍了硫化铅锌矿物晶体结构与可浮性的关系, 从浮选电化学理论和量子化学理论方面分析了矿浆环境对铅锌浮选分离的影响, 从分子角度总结了药剂与铅锌矿物表面的作用机理, 归纳了铅锌分离的浮选技术和药剂在工业生产中的应用。目前, 铅锌资源回收难度大、新型药剂缺乏, 因此, 深度揭示药剂作用机理、开发新型绿色药剂是未来铅锌分离的研究方向之一。

  • 加载中
  • 表 1  不同硫化铅锌矿浮选工艺特点和应用

    Table 1.  Characteristics and applications of different flotation process for lead-zinc sulfide minerals

    浮选工艺 特点和适用范围
    优先浮选 先抑锌浮铅,再活化锌,先后得到铅、锌精矿,精矿品位好,但药剂消耗大。适用于嵌布粒度粗、原矿品位较高的矿石
    混合浮选 若铅、锌嵌布关系紧密,则先混合浮选出铅锌, 再将铅锌分离。抛尾后进入磨矿的矿量少,能够降低磨矿的能耗、减少后续作业处理量。适用于铅锌矿物共生关系密切、嵌布粒度细的低品位矿石浮选
    等可浮浮选 根据矿物天然可浮性将矿物分成易浮和难浮两部分,在不添加抑制剂仅添加捕收剂前提下将天然可浮选性相近的硫化铅锌矿物混合回收,然后分离铅锌。适用于有用矿物包含易浮和难浮两部分的铅锌矿石浮选,产品回收率高的同时药剂消耗不大,但流程复杂,设备多
    异步浮选 不同于等可浮浮选中让铅一次性全部浮完,方铅矿和闪锌矿不同步地在各自合适的条件下浮选。可浮性好的铅锌矿物和可浮性差的铅锌矿物分别在两步作业中回收,分步骤浮选可浮性不同的硫化铅锌矿物,适用于混合精矿的浮选
    电位调控浮选 通过控制硫化矿浮选矿浆中的电化学条件,改变捕收剂在硫化矿表面的反应产物和吸附稳定性,实现硫化矿物选择性浮选分离。具有药剂消耗少和低污染的特点,但电位难以控制,工业应用不广泛
    下载: 导出CSV
  • [1]

    USGS. Mineral commodity summaries 2022[R]. Reston: USGS, 2022: 97+193.

    [2]

    江少卿, 徐毅, 孙尚信, 等. 全球铅锌矿资源分布[J]. 地质与资源, 2020, 29(3): 224-232. doi: 10.3969/j.issn.1671-1947.2020.03.003

    JIANG S Q, XU Y, SUN S X, et al. Distribution of global lead-zinc ore resources[J]. Geology and Resources, 2020, 29(3): 224-232. doi: 10.3969/j.issn.1671-1947.2020.03.003

    [3]

    杨荣林. 浅析我国铅锌矿资源开发现状及可持续发展建议[J]. 世界有色金属, 2018(1): 148+150. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201801087.htm

    YANG R L. A brief analysis of the development status of lead-zinc ore resources in my country and suggestions for sustainable development[J]. World Nonferrous Metals, 2018(1): 148+150. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201801087.htm

    [4]

    姜美光, 刘全军, 杨俊龙, 等. 新疆某硫化铅锌矿选矿试验研究[J]. 矿冶, 2014, 23(1): 26-30. doi: 10.3969/j.issn.1005-7854.2014.01.007

    JIANG M G, LIU Q J, YANG J L, et al. Research on beneficiation test of a lead-zinc sulfide mine in Xinjiang[J]. Mining and Metallurgy, 2014, 23(1): 26-30. doi: 10.3969/j.issn.1005-7854.2014.01.007

    [5]

    杨招君, 徐晓衣, 陈龙, 等. 青海某低品位硫化铅锌矿选矿试验研究[J]. 中国矿业, 2021, 30(S2): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S2058.htm

    YANG Z J, XU X Y, CHEN L, et al. Research on beneficiation test of a low-grade lead-zinc sulfide ore in Qinghai[J]. China Mining Industry, 2021, 30(S2): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S2058.htm

    [6]

    郭学益, 田庆华, 刘咏, 等. 有色金属资源循环研究应用进展[J]. 中国有色金属学报, 2019, 29(9): 1859-1901. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201909006.htm

    GUO X Y, TIAN Q H, LIU Y, et al. Research and application progress of non-ferrous metal resource recycling[J]. Chinese Journal of Nonferrous Metals, 2019, 29(9): 1859-1901. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201909006.htm

    [7]

    赵珊茸. 结晶学及矿物学[M]. 北京: 高等教育出版社, 2004: 49-53.

    ZHAO S R. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2004: 49-53.

    [8]

    CHEN J H, WANG L, CHEN Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena[J]. International Journal of Mineral Processing, 2011, 98(3-4): 132-136. doi: 10.1016/j.minpro.2010.11.001

    [9]

    Becker U, Greatbanks S P, Rosso K M, et al. An embedding approach for the calculation of STM images: method development and application to galena (PbS)[J]. Journal of Chemical Physics, 1997, 107(18): 7537-7542. doi: 10.1063/1.474992

    [10]

    蓝丽红, 艾光湧, 王佳琪, 等. 含杂质方铅矿的电子结构和光学性质的第一性原理计算[J]. 科学技术与工程, 2017, 17(12): 152-155. doi: 10.3969/j.issn.1671-1815.2017.12.027

    LAN L H, AI G Y, WANG J Q, et al. First-principles calculation of electronic structure and optical properties of galena with doping[J]. Science Technology and Engineering, 2017, 17(12): 152-155. doi: 10.3969/j.issn.1671-1815.2017.12.027

    [11]

    顾帼华, 钟素姣. 方铅矿磨矿体系表面电化学性质及其对浮选的影响[J]. 中南大学学报(自然科学版), 2008(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200801011.htm

    GU Y H, ZHONG S J. Electrochemical properties of the surface of the galena grinding system and its influence on flotation[J]. J. Cent. South Univ. (Science and Technology), 2008(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200801011.htm

    [12]

    蓝丽红. 晶格缺陷对方铅矿表面性质、药剂分子吸附及电化学行为影响的研究[D]. 南宁: 广西大学, 2012.

    LAB L H. Study on the influence of lattice defects on the surface properties, molecular adsorption and electrochemical behavior of galena[D]. Nanning: Guangxi University, 2012.

    [13]

    秦善, 王长秋. 矿物学基础[M]. 北京: 北京大学出版社, 2006: 45-47.

    QIN S, WANG C Q. Foundations of mineralogy[M]. Beijing: Peking University Press, 2006: 45-47.

    [14]

    WITHERS R L, WELBERRY T R, PRING A, et al. 'Soft'phonon modes, structured diffuse scattering and the crystal chemistry of Fe-bearing sphalerites[J]. Journal of Solid State Chemistry, 2005, 178(3): 655-660. doi: 10.1016/j.jssc.2004.12.011

    [15]

    FENG B, ZHONG C H, ZHANG L Z, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum[J]. Minerals Engineering, 2015, 146: 106142.

    [16]

    李迪恩, 彭明生. 闪锌矿的吸收光谱和颜色的本质[J]. 矿物学报, 1990(1): 29-34. doi: 10.3321/j.issn:1000-4734.1990.01.005

    LI D E, PENG M S. Absorption spectra and coloration of sphalerite[J]. Acta Minera Sinica, 1990(1): 29-34. doi: 10.3321/j.issn:1000-4734.1990.01.005

    [17]

    陈晔, 陈建华, 郭进. 天然杂质对闪锌矿电子结构和半导体性质的影响[J]. 物理化学学报, 2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001

    CHEN Y, CHEN J H, GUO J. Effect of natural impurities on the electronic structures and semiconducting properties of sphalerite[J]. Acta Physico-Chimica Sinica, 2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001

    [18]

    蒋磊. 闪锌矿的生物氧化与化学氧化对比[J]. 金属矿山, 2011(3): 84-86+98.

    JIANG L. Comparison of biological oxidation and chemical oxidation of sphalerite[J]. Metal Mines, 2011(3): 84-86+98.

    [19]

    CHEN Y, LIU X M, CHEN J H. Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study[J]. Minerals Engineering, 2021, 165: 106834. doi: 10.1016/j.mineng.2021.106834

    [20]

    陈建华, 王檑, 陈晔, 等. 空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J]. 中国有色金属学报, 2010, 20(9): 1815-1821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201009026.htm

    CHEN J H, WANG B, CHEN Y, et al. Density functional theory of effects of vacancy defects on electronic structure and flotation of galena[J]. Chinese Journal of Nonferrous Metals, 2010, 20(9): 1815-1821. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201009026.htm

    [21]

    王国彬, 蓝卓越, 王瑞康, 等. 银含量对方铅矿浮选的影响及其机理研究进展[J]. 黄金科学技术, 2021, 29(5): 749-760. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202105013.htm

    WANG G B, LAN Z Y, WANG R K, et al. Effect of silver content on galena flotation and research progress on its mechanism[J]. Gold Science and Technology, 2021, 29(5): 749-760. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202105013.htm

    [22]

    陈建华. 硫化矿物浮选晶格缺陷理论[M]. 长沙: 中南大学出版社, 2012: 10-17.

    CHEN J H. The theory of lattice defects in sulfide mineral flotation[M]. Changsha: Central South University Press, 2012: 10-17.

    [23]

    SMALLMAN R E. Lattice Defects[J]. Nature, 1968, 220(5171): 1001-1002.

    [24]

    文书明, 张文彬. 矿物表面药剂吸附层水稳定性理论研究[J]. 有色金属(选矿部分), 1995(6): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK506.008.htm

    WEN S M, ZHANG W B. Theoretical study on water stability of adsorbent layer of mineral surface agents[J]. Nonferrous Metals (Mineral Processing Section), 1995(6): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK506.008.htm

    [25]

    蓝丽红, 陈建华, 李玉琼, 等. 空位缺陷对氧分子在方铅矿(100)表面吸附的影响[J]. 中国有色金属学报, 2012, 22(9): 2626-2635. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201209031.htm

    LAN L H, CHEN J H, LI Y Q, et al. Effect of vacancy defects on oxygen molecule adsorption on galena surface (100)[J]. Chinese Journal of Nonferrous Metals, 2012, 22(9): 2626-2635. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201209031.htm

    [26]

    印万忠, 孙传尧. 矿物晶体结构与表面特性和可浮性关系的研究[J]. 国外金属矿选矿, 1998(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199804002.htm

    YIN W Z, SUN C Y. Study on the relationship between mineral crystal structure, surface properties and floatability[J]. Foreign Metal Mineral Processing, 1998(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199804002.htm

    [27]

    CHEN J H, KE B L, LAN L H, et al. Influence of Ag, Sb, Bi and Zn impurities on electrochemical and flotation behaviour of galena[J]. Minerals Engineering, 2015, 72: 10-16. doi: 10.1016/j.mineng.2014.12.013

    [28]

    CHEN J H, CHEN Y, LI Y Q. Quantum-mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface[J]. 中国有色金属学报(英文版), 2010, 20(6): 1121-1130.

    [29]

    SONG B X, DONG X R, QIU X Y, et al. Electronic structure and flotation behavior of Ag-bearing galena[J]. Journal of Alloys and Compounds, 2021, 868(83): 159105.

    [30]

    陈建华, 曾小钦, 陈晔, 等. 含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J]. 中国有色金属学报, 2010, 20(4): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201004028.htm

    CHEN J H, ZENG X Q, CHEN Y, et al. First-principles calculation of the electronic structure of sphalerite containing vacancies and impurity defects[J]. Chinese Journal of Nonferrous Metals, 2010, 20(4): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201004028.htm

    [31]

    傅开彬, 宁燕, 肖军辉, 等. 贵州某铅细粒嵌布的高硫铅锌矿浮选工艺研究[J]. 中国矿业, 2016, 25(5): 111-115. doi: 10.3969/j.issn.1004-4051.2016.05.027

    FU K B, NING Y, XIAO J H, et al. Research on the flotation process of a high-sulfur lead-zinc ore embedded with lead fine particles in Guizhou[J]. China Mining Industry, 2016, 25(5): 111-115. doi: 10.3969/j.issn.1004-4051.2016.05.027

    [32]

    鱼博, 王宇斌, 王妍, 等. 某铜铅锌多金属硫化矿浮选分离试验研究[J]. 矿业研究与开发, 2020, 40(9): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202009022.htm

    YU B, WANG Y B, WANG Y, et al. Experimental research on flotation separation of a copper-lead-zinc polymetallic sulphide[J]. Ore Mining Research and Development, 2020, 40(9): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202009022.htm

    [33]

    LIU J, EJTEMAEI M, NGUYEN A V, et al. Surface chemistry of Pb-activated sphalerite[J]. Minerals Engineering, 2020, 145: 106058. doi: 10.1016/j.mineng.2019.106058

    [34]

    PENG Y J, GRANO S. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids[J]. Journal of Colloid and Interface Science, 2010, 347(1): 127-131. doi: 10.1016/j.jcis.2010.03.027

    [35]

    WANG X J, QIN W Q, JIAO F, et al. The influence of galvanic interaction on the dissolution and surface composition of galena and pyrite in flotation system[J]. Minerals Engineering, 2020, 156: 106525. doi: 10.1016/j.mineng.2020.106525

    [36]

    王淀佐, 胡岳华, 李柏淡. 硫化矿物无捕收剂浮选对经典浮选理论的挑战[J]. 有色金属, 1992, 44(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199201004.htm

    WANG D Z, HU Y H, LI B D. The challenge of collector-free flotation of sulfide minerals to classical flotation theory[J]. Nonferrous Metals, 1992, 44(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199201004.htm

    [37]

    HU Y H, WU M R, LIU R Q, et al. A review on the electrochemistry of galena flotation[J]. Minerals Engineering, 2020, 150: 106272. doi: 10.1016/j.mineng.2020.106272

    [38]

    冯其明, 陈建华. 硫化矿物浮选电化学[M]. 长沙: 中南大学出版社, 2014: 71-83.

    FENG Q M, CHEN J H. Electrochemical flotation of sulfide minerals[M]. Changsha: Central South University Press, 2014: 71-83.

    [39]

    CUI W Y, Chen J H, LI Y Q, et al. Interactions of xanthate molecule with different mineral surfaces: a comparative study of Fe, Pb and Zn sulfide and oxide minerals with coordination chemistry[J]. Minerals Engineering, 2020, 159: 106565. doi: 10.1016/j.mineng.2020.106565

    [40]

    CHIMONYO W, CORIN K C, J G. WIESE, et al. Redox potential control during flotation of a sulphide mineral ore[J]. Minerals Engineering, 2017, 110: 57-64. doi: 10.1016/j.mineng.2017.04.011

    [41]

    覃文庆, 姚国成, 顾帼华, 等. 硫化矿物的浮选电化学与浮选行为[J]. 中国有色金属学报, 2011, 21(10): 2669-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110033.htm

    QIN W Q, YAO G C, GU W H, et al. Flotation electrochemistry and flotation behavior of sulfide minerals[J]. Chinese Journal of Nonferrous Metals, 2011, 21(10): 2669-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110033.htm

    [42]

    程琍琍. 含铁闪锌矿的难选铅锌硫化矿电位调控浮选工艺原理与应用[D]. 赣州: 江西理工大学, 2008.

    CHENG L L. The principle and application of potential control flotation process for refractory lead-zinc sulfide ore containing iron-bearing sphalerite[D]. Ganzhou: Jiangxi University of Science and Technology, 2008.

    [43]

    骆任. 某铜铅混合精矿电位调控浮选分离试验的研究[J]. 湖南有色金属, 2014, 30(6): 17-19+59. doi: 10.3969/j.issn.1003-5540.2014.06.006

    LUO R. Study of a flotation separation of copper and lead concentrates mixed potential regulation[J]. Hunan Nonferrous Metals, 2014, 30(6): 17-19+59. doi: 10.3969/j.issn.1003-5540.2014.06.006

    [44]

    严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 北京: 科学出版社, 2013: 28-35.

    YAN L M, ZHU S H. Theory and practice of molecular dynamics simulation[M]. Beijing: Science Press, 2013: 28-35.

    [45]

    王瑜, 刘建, 曾勇, 等. 量子化学计算在硫化铅锌矿浮选机理中的研究进展[J]. 矿产保护与利用, 2018(3): 37-42+48. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=379c7f64-09ca-4efa-babd-395ac0f5b1f1

    WANG Y, LIU J, ZENG Y, et al. Quantum chemistry calculation in lead-zinc sulfide ore flotation: a review[J]. Conservation and Utilization of Mineral Resources, 2018(3): 37-42+48. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=379c7f64-09ca-4efa-babd-395ac0f5b1f1

    [46]

    YIN J R, WU W H, XIE W, et al. Influence of line defects on relaxation properties of graphene: a molecular dynamics study[J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 68: 102-106. doi: 10.1016/j.physe.2014.12.015

    [47]

    ZHANG L M, GAO J D, KHOSO S A, et al. A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations[J]. Minerals Engineering, 2021, 167: 106885. doi: 10.1016/j.mineng.2021.106885

    [48]

    罗思岗. 应用分子力学法研究铜离子活化闪锌矿作用机理[J]. 现代矿业, 2012, 27(3): 7-9. doi: 10.3969/j.issn.1674-6082.2012.03.003

    LUO S G. Application of molecular mechanics to study the mechanism of copper ion-activated sphalerite[J]. Modern Mining, 2012, 27(3): 7-9. doi: 10.3969/j.issn.1674-6082.2012.03.003

    [49]

    曹飞, 孙传尧. 硫化矿浮选机理的量子化学研究进展[J]. 有色金属(选矿部分), 2012(5): 49-52+56. doi: 10.3969/j.issn.1671-9492.2012.05.012

    CAO F, SUN C Y. The research progress of quantum chemistry on flotation mechanism of sulfide ores[J]. Nonferrous Metals (Mineral Processing Section), 2012(5): 49-52+56. doi: 10.3969/j.issn.1671-9492.2012.05.012

    [50]

    何桂春, 蒋巍, 项华妹, 等. 密度泛函理论及其在选矿中的应用[J]. 有色金属科学与工程, 2014, 5(2): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201402011.htm

    HE G C, JIANG W, XIANG H M, et al. Density functional theory and its application in mineral processing[J]. Nonferrous Metal Science and Engineering, 2014, 5(2): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201402011.htm

    [51]

    DENG Z B, TONG X, HUANG L Y, et al. Density functional theory study of H2O adsorption on different sphalerite surfaces[J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 82-88.

    [52]

    孙伟, 胡岳华, 邱冠周, 等. 闪锌矿(110)表面离子吸附的动力学模拟[J]. 中国有色金属学报, 2002(1): 187-190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    SUN W, HU Y H, QIU G Z, et al. Kinetic simulation of ion adsorption on sphalerite (110) surface[J]. Chinese Journal of Nonferrous Metals, 2002(1): 187-190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    [53]

    浦家扬. 闪锌矿的物理化学特性及其浮选行为的研究[J]. 国外金属矿选矿, 1985(5): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198505003.htm

    PU J Y. Research on physicochemical property and flotation behavior of sphalerite[J]. Metallic Ore Dressing Abroad, 1985(5): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198505003.htm

    [54]

    陈建华, 陈晔, 曾小钦, 等. 铁杂质对闪锌矿表面电子结构及活化影响的第一性原理研究[J]. 中国有色金属学报, 2009, 19(8): 1517-1523. doi: 10.3321/j.issn:1004-0609.2009.08.026

    CHEN J H, CHEN Y, ZENG X Q, et al. A first-principles study on the influence of iron impurities on the electronic structure and activation of sphalerite surface[J]. Chinese Journal of Nonferrous Metals, 2009, 19(8): 1517-1523. doi: 10.3321/j.issn:1004-0609.2009.08.026

    [55]

    ZHANG L M, GAO J D, KHOSO S A, et al. Interaction mechanism of the adopted reagents in the flotation recovery of sphalerite and pyrite from a galena flotation tailing: first-principles calculations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126378. doi: 10.1016/j.colsurfa.2021.126378

    [56]

    龚明光. 泡沫浮选[M]. 北京: 冶金工业出版社, 2007: 250-256.

    GONG M G. Foam flotation[M]. Beijing: Metallurgical Industry Press, 2007: 250-256.

    [57]

    尚衍波, 陈经华, 何发钰. 中国铅锌选矿技术新进展[J]. 世界有色金属, 2016(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201606001.htm

    SHANG Y B, CHEN J H, HE F Y. New progress of lead-zinc beneficiation technology in China[J]. World Nonferrous Metals, 2016(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201606001.htm

    [58]

    戴晶平. 铅锌选矿技术[M]. 长沙: 中南大学出版社, 2010: 51-55.

    DAI J P. Lead-zinc beneficiation technology[M]. Changsha: Central South University Press, 2010: 51-55.

    [59]

    邱廷省, 何元卿, 余文, 等. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 金属矿山, 2016(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201603002.htm

    QIU T S, HE Y Q, YU W, et al. Research status and progress of flotation separation technology of lead-zinc sulfide ore[J]. Metal Mines, 2016(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201603002.htm

    [60]

    王立刚, 刘万峰, 李成必. 巴基斯坦杜达铅锌矿优先浮选工艺工业试验研究[J]. 中国矿业, 2017, 26(S2): 345-347. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S2081.htm

    WANG L G, LIU W F, LI B C, et al. Commercial test on Pb-Zn selective flotation in Duddar lead zinc mine, Bakistan[J]. China Mining Magazine, 2017, 26(S2): 345-347. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2017S2081.htm

    [61]

    梁李晓, 陈建华, 温凯. 云南某硫化铅锌矿低碱条件下浮选分离试验[J]. 金属矿山, 2020(12): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202012020.htm

    LIANG L X, CHEN J H, WEN K. Flotation separation test under low alkali conditions of a lead-zinc sulfide mine in Yunnan[J]. Metal Mines, 2020(12): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202012020.htm

    [62]

    陈京玉, 康维刚, 谢建平, 等. 内蒙古某深部高硫铅锌矿石浮选工艺试验研究[J]. 金属矿山, 2018(10): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201810016.htm

    CHEN J Y, KANG W G, XIE J P, et al. Experimental study on flotation process of a deep high-sulfur lead-zinc ore in Inner Mongolia[J]. Metal Mines, 2018(10): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201810016.htm

    [63]

    敖顺福, 王春光. 澜沧老厂银铅锌多金属矿选矿工艺优化与生产实践[J]. 矿冶工程, 2016, 36(6): 57-60. doi: 10.3969/j.issn.0253-6099.2016.06.015

    AO S F, WANG C G. Optimization and industrial practice for beneficiation flowsheet of Ag-Pb-Zn polymetallic ore from Laochang mine in Lancang[J]. Mining and Metallurgical Engineering, 2016, 36(6): 57-60. doi: 10.3969/j.issn.0253-6099.2016.06.015

    [64]

    郑伦, 张笃. 电位调控浮选在凡口铅锌矿的应用[J]. 中国矿山工程, 2005(2): 1-4+8. doi: 10.3969/j.issn.1672-609X.2005.02.002

    ZHENG L, ZHANG D. Application of potential adjustment and control flotation in Fankou lead-zinc mine[J]. China Mine Engineering, 2005(2): 1-4+8. doi: 10.3969/j.issn.1672-609X.2005.02.002

    [65]

    夏青, 欧阳辉, 梁菁菁. 硫化铅锌矿浮选分离研究进展[J]. 矿冶, 2018, 27(2): 9-14. doi: 10.3969/j.issn.1005-7854.2018.02.003

    XIA Q, OU Y H, LIANG J J. Research progress on flotation separation of lead-zinc sulfide ore[J]. Mining and Metallurgy, 2018, 27(2): 9-14. doi: 10.3969/j.issn.1005-7854.2018.02.003

    [66]

    SRDJAN M B. Flotation of mixed lead zinc sulphide oxide and oxide lead and zinc ores[J]. 2010, 20(1): 67-86.

    [67]

    史巾, 卜显忠, 翁存建, 等. 四川某硫化铅锌矿选矿工艺试验研究[J]. 矿业研究与开发, 2021, 41(1): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202101026.htm

    SHI J, BU X Z, WENG C J, et al. Research on beneficiation technology of a lead-zinc sulfide mine in Sichuan[J]. Mining Research and Development, 2021, 41(1): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202101026.htm

    [68]

    敖顺福, 王春光, 胡红喜, 等. 某含银低品位铅锌矿石选矿试验研究[J]. 有色金属(选矿部分), 2019(4): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201904007.htm

    AO S F, WANG C G, HU H X, et al. Processing experimental study on a low-grade lead-zinc ore containing silver[J]. Nonferrous Metals (Mineral Processing Part), 2019(4): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201904007.htm

    [69]

    贺翔. 宝山铅锌银多金属矿工艺流程改造与生产实践[J]. 湖南有色金属, 2015, 31(3): 21-25. doi: 10.3969/j.issn.1003-5540.2015.03.007

    HE X. Transformation and production practice of Baoshan lead-zinc-silver polymetallic ore[J]. Hunan Nonferrous Metals, 2015, 31(3): 21-25. doi: 10.3969/j.issn.1003-5540.2015.03.007

    [70]

    王乃玲, 宋宁波, 卢冀伟. 甘肃某硫化铅锌矿无碱度浮选试验研究[J]. 金属矿山, 2020(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002012.htm

    WANG N L, SONG N B, LU J W. Experimental study on non-alkalinity flotation of a lead-zinc sulfide mine in Gansu[J]. Metal Mines, 2020(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002012.htm

    [71]

    MA X, HU Y, ZHONG H, et al. A novel surfactant S-benzoyl-N, N-diethyldithiocarbamate synthesis and its flotation performance to galena[J]. Applied Surface Science, 2016, 365: 342-351. doi: 10.1016/j.apsusc.2016.01.048

    [72]

    WANG J G, JI Y H, CHENG S Y, et al. Selective flotation separation of galena from sphalerite via chelation collectors with different nitrogen functional groups[J]. Applied Surface Science, 2021, 568: 150956. doi: 10.1016/j.apsusc.2021.150956

    [73]

    杨延宙, 吴明海, 张慧婷, 等. 新型捕收剂Y2提高四川某铅锌硫化矿浮选指标的研究[J]. 矿产保护与利用, 2020, 40(3): 140-146. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=812247b8-a0a6-4beb-9b5f-35e0b634e346

    YANG Y Z, WU M H, ZHANG H T, et al. Research on improving the flotation index of a lead-zinc sulfide ore in Sichuan with new collector Y2[J]. Conservation and Utilization of Mineral, 2020, 40(3): 140-146. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=812247b8-a0a6-4beb-9b5f-35e0b634e346

    [74]

    NATARAJIAN R, NIRDOSH I. New collectors for sphalerite flotation[J]. International Journal of Mineral Processing, 2006, 79(3): 141-148. doi: 10.1016/j.minpro.2005.11.011

    [75]

    胡盘金, 郑永兴, 包凌云, 等. 硫化铅锌矿物浮选药剂应用研究进展[J]. 矿冶, 2021, 30(3): 123-128+144. doi: 10.3969/j.issn.1005-7854.2021.03.019

    HU P J, ZHENG Y X, BAO L Y, et al. Research progress in the application of lead and zinc sulfide minerals flotation reagents[J]. Mining and Metallurgy, 2021, 30(3): 123-128+144. doi: 10.3969/j.issn.1005-7854.2021.03.019

    [76]

    李文华, 韩俊伟, 刘维, 等. 新疆某硫化铅矿石选矿试验研究[J]. 金属矿山, 2016(6): 65-68. doi: 10.3969/j.issn.1001-1250.2016.06.012

    LI W H, HAN J W, LIU W, et al. Experimental study on beneficiation of a lead sulfide ore in Xinjiang[J]. Metal Mines, 2016(6): 65-68. doi: 10.3969/j.issn.1001-1250.2016.06.012

    [77]

    方振鹏, 胡岳华, 戴晶平, 等. 缅甸某铅锌硫化矿选矿工艺试验研究[J]. 国外金属矿选矿, 2004(1): 29-30+28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200401005.htm

    FANG Z P, HU Y H, DAI J P, et al. Research on beneficiation process test of a lead-zinc sulfide ore in Myanmar[J]. Foreign Metal Mineral Processing, 2004(1): 29-30+28. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200401005.htm

    [78]

    尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018, 27(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201804004.htm

    YAO Z W, FANG J J, DAI Z, et al. Reaction mechanism and research progress of sphalerite depressants[J]. Mining and Metallurgy, 2018, 27(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201804004.htm

    [79]

    YANG B Q, ZHU H Y, ZENG L Y, et al. An environmental-friendly sphalerite depressant (2-hydroxyphosphonoacetic acid) for the selective flotation separation of sphalerite from galena[J]. Journal of Molecular Liquids, 2021, 343: 117614.

    [80]

    TAN X, ZHU Y G, SUN C Y, et al. Adding cationic guar gum after collector: A novel investigation in flotation separation of galena from sphalerite[J]. Minerals Engineering, 2020, 157: 106542.

    [81]

    HUANG P, CAOM L, LIU Q. Selective depression of sphalerite by chitosan in differential Pb-Zn flotation[J]. International Journal of Mineral Processing, 2013, 122: 29-35.

    [82]

    GAO Z Y, JIANG Z Y, SUN W, et al. Typical roles of metal ions in mineral flotation: a review[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 2081-2101.

    [83]

    WANG H, WEN S M, HAN G, et al. Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate[J]. Minerals Engineering, 2020, 146: 106132.

    [84]

    DONG W C, LIU J, HAO J M, et al. Adsorption of DTC-CTS on sphalerite (110) and Cu-activated sphalerite (110) surfaces: A DFT study[J]. Applied Surface Science, 2021, 551: 149466.

    [85]

    温凯, 陈建华. 云南某含金银低品位硫化铅锌矿浮选试验[J]. 金属矿山, 2019(4): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201904015.htm

    WEN K, CHEN J H. Flotation test of a low-grade lead-zinc sulfide ore containing gold and silver in Yunnan[J]. Metal Mines, 2019(4): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201904015.htm

    [86]

    TONG X, SONG S X, HE J, et al. Flotation of indium-beard marmatite from multi-metallic ore[J]. Rare Metals, 2008, 27(2): 107-111.

    [87]

    谢贤, 童雄, 王成行, 等. 某难选高硫铅锌矿的选矿工艺试验研究[J]. 矿产保护与利用, 2010(1): 37-40. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8db4eea9-b85b-4351-b091-5055d368165e

    XIE X, TONG X, WANG C X, et al. Research on beneficiation technology of a refractory high-sulfur lead-zinc ore[J]. Conservation and Utilization of Mineral, 2010(1): 37-40. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8db4eea9-b85b-4351-b091-5055d368165e

    [88]

    陈建华, 童雄, 甘恒, 等. 多金属硫化矿混合浮选高效活化剂试验研究[J]. 有色金属(选矿部分), 2018(3): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201803020.htm

    CHEN J H, TONG X, GAN H, et al. Experimental study on high-efficiency activator for mixed flotation of polymetallic sulfide ore[J]. Nonferrous Metals (Mineral Processing), 2018(3): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201803020.htm

  • 加载中

(1)

计量
  • 文章访问数:  2036
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2022-03-14
刊出日期:  2022-06-25

目录