大分子偶联剂KH570-g-PLA改性绢云母的制备与表征

张震, 胡应模, 庞宝宝, 武莎莎, 崔奎, 郭素芳. 大分子偶联剂KH570-g-PLA改性绢云母的制备与表征[J]. 矿产保护与利用, 2022, 42(4): 45-50. doi: 10.13779/j.cnki.issn1001-0076.2022.04.005
引用本文: 张震, 胡应模, 庞宝宝, 武莎莎, 崔奎, 郭素芳. 大分子偶联剂KH570-g-PLA改性绢云母的制备与表征[J]. 矿产保护与利用, 2022, 42(4): 45-50. doi: 10.13779/j.cnki.issn1001-0076.2022.04.005
ZHANG Zhen, HU Yingmo, PANG Baobao, WU Shasha, CUI Kui, GUO Sufang. Preparation and Characterization of Sericite Modified by Macromolecular Coupling Agent KH570-g-PLA[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 45-50. doi: 10.13779/j.cnki.issn1001-0076.2022.04.005
Citation: ZHANG Zhen, HU Yingmo, PANG Baobao, WU Shasha, CUI Kui, GUO Sufang. Preparation and Characterization of Sericite Modified by Macromolecular Coupling Agent KH570-g-PLA[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 45-50. doi: 10.13779/j.cnki.issn1001-0076.2022.04.005

大分子偶联剂KH570-g-PLA改性绢云母的制备与表征

详细信息
    作者简介: 张震(1997—),男,硕士,主要研究方向为矿物材料表面改性及其功能复合材料制备; 胡应模,男,教授,博士生导师,于中国地质大学(北京)材料科学与工程学院材料化学教研室从事教学与科研工作,主要研究方向包括矿物材料的表面改性及其功能复合材料的制备与表征、高分子材料及其复合材料的开发及利用以及工业固废及尾矿的综合利用等,累计发表论文130余篇,其中SCI及EI收录60篇
    通讯作者: 胡应模(1964—),男,教授,博士生导师,主要研究方向为矿物材料改性和高分子复合材料,E-mail:huyingmo@cugb.edu.cn
  • 中图分类号: TD985

Preparation and Characterization of Sericite Modified by Macromolecular Coupling Agent KH570-g-PLA

More Information
  • 采用"一步法"复合改性工艺制备大分子偶联剂KH570-g-PLA改性绢云母,以改性前后绢云母的浊度和接触角为参数对绢云母表面改性工艺进行优化,考察了改性剂用量、反应时间和反应温度对绢云母表面改性效果的影响。试验结果表明,KH570-g-PLA改性绢云母的最佳工艺条件为聚乳酸(PLA)用量10%、反应温度110℃、反应时间4 h,此时其浊度为809 NTU,接触角为66°。相比未改性绢云母,浊度提高196%,接触角提高285%。测试分析表明,大分子偶联剂KH570-g-PLA被成功偶联到绢云母表面,KH570-g-PLA改性绢云母的晶体片径变小,团聚现象减弱,分散性和疏水性提高,结晶度降低,耐热温度约为705℃。

  • 加载中
  • 图 1  KH570-g-PLA改性绢云母机理

    Figure 1. 

    图 2  PLA用量对绢云母改性效果的影响

    Figure 2. 

    图 3  反应温度对绢云母改性效果的影响

    Figure 3. 

    图 4  反应时间对绢云母改性效果的影响

    Figure 4. 

    图 5  绢云母改性前后扫描电镜分析(a改性前;b改性后)

    Figure 5. 

    图 6  绢云母改性前后红外光谱分析(IR)

    Figure 6. 

    图 7  绢云母改性前后X射线衍射分析(XRD)

    Figure 7. 

    图 8  绢云母改性前后热重分析(TG)

    Figure 8. 

    表 1  绢云母改性前后粒度分析

    Table 1.  Size analysis of sericite before and after modification

    Size analysi d50/μm d90/μm Middiameter/μm BET/(m2·g-1)
    Unmodified 27.10 72.74 5.908 0.133
    Modified 23.76 67.59 4.853 0.157
    下载: 导出CSV
  • [1]

    LIANG Y, YANG D, YANG T, et al. The stability of intercalated sericite by cetyl trimethylammonium ion under different conditions and the preparation of sericite/polymer nanocomposites[J]. Polymers, 2019, 11(5): 900-911. doi: 10.3390/polym11050900

    [2]

    岳晋充. 云母表面改性方法综述[J]. 科技创新与应用, 2015, 1(31): 7-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201531003.htm

    YUE J C. Review on surface modification methods of mica[J]. Science & Technology Innovation and Application, 2015, 1(31): 7-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201531003.htm

    [3]

    兰黄鲜. 云母粉在高分子材料改性中的研究进展[J]. 当代化工, 2011, 40(2): 177-179. doi: 10.3969/j.issn.1671-0460.2011.02.022

    LAN H X. Research progress of mica powder in the modification of polymer materials[J]. Contemporary Chemical Industry, 2011, 40(2): 177-179. doi: 10.3969/j.issn.1671-0460.2011.02.022

    [4]

    LISICHKIN G, OLENIN A. Hydrophobization of inorganic materials by chemical modification of the surface[J]. Russian Journal of Applied Chemistry, 2020, 93(1): 1-13.

    [5]

    尚丽娜, 王如寅, 关庆文, 等. 聚乳酸纳米填充改性的研究进展[J]. 化工新型材料, 2009, 37(9): 21-23+51. doi: 10.3969/j.issn.1006-3536.2009.09.007

    SHANG L N, WANG R Y, GUAN Q W, et al. Research progress of polylactic acid nanofilling modification[J]. New Chemical Materials, 2009, 37(9): 21-23+51. doi: 10.3969/j.issn.1006-3536.2009.09.007

    [6]

    JAIN S, MISRA M, MOHANTY A, et al. Thermal, mechanical and rheological behavior of poly(lactic acid)/talc composites[J]. Journal of Polymers and the Environment, 2012, 20(4): 1027-1037. doi: 10.1007/s10924-012-0500-z

    [7]

    HE H, LIU B, XUE B, et al. Study on structure and properties of biodegradable PLA/PBAT/organic-modified MMT nanocomposites[J]. Journal of Thermoplastic Composite Materials, 2019, 2: 1-18.

    [8]

    JIA S, WANG Z, ZHU Y, et al. Composites of poly(lactic) acid/thermoplastic polyurethane/mica with compatibilizer: morphology, miscibility and interphase[J]. RSC Advances, 2015, 5(120): 98915-98924. doi: 10.1039/C5RA17938F

    [9]

    钟振彪. 绢云母的表面改性及其高分子复合材料性能研究[D]. 合肥: 合肥工业大学, 2011.

    Zhong Z B. Study on surface modification of sericite and properties of polymer composites[D]. Hefei: Hefei University of Technology, 2011.

    [10]

    CHEN K, LI P, LI X, et al. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites[J]. International Journal of Biological Macromolecules, 2021, 182: 2108-2116. doi: 10.1016/j.ijbiomac.2021.05.207

    [11]

    杨琳强, 金立维. 聚乳酸接枝硅烷偶联剂的制备及对聚乳酸/木粉复合材料的影响[J]. 高分子材料科学与工程, 2016, 32(7): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201607024.htm

    YANG L Q, JIN L W. Preparation of poly (lactic acid) grafted silane coupling agent and its effect on poly (lactic acid)/wood powder composites[J]. Polymer Materials Science and Engineering, 2016, 32(7): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201607024.htm

    [12]

    DUAN J, FAN C, LI Y, et al. Preparation and characterization of the covalent-integrated poly(lactic acid) and scrap leather fiber composites[J]. Journal of Shanghai Jiaotong University (Science), 2012, 17(5): 586-592.

    [13]

    韩金光, 李珠, 王亮, 等. 膨胀珍珠岩的复合改性工艺及其对混凝土性能的影响[J]. 新型建筑材料, 2016, 43(10): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201610030.htm

    HAN J G, LI Z, WANG L, et al. Composite modification process of expanded perlite and its effect on concrete properties[J]. New Building Materials, 2016, 43(10): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201610030.htm

    [14]

    赵志鸿, 张廷友, 吕召胜, 等. 超高分子量聚乙烯加工改性研究进展[J]. 工程塑料应用, 2012, 40(1): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ACSN201201024.htm

    ZHAO Z H, ZHANG T Y, LU Z S, et al. Progress in processing and modification of ultra-high molecular weight polyethylene. Engineering Plastics Application, 2012, 40(1): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ACSN201201024.htm

    [15]

    汪磊, 周艳, 贾德民. 橡胶/有机蒙脱土纳米复合材料的研究——不同改性工艺的影响[J]. 弹性体, 2002, 1(4): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TXTZ200204009.htm

    WANG L, ZHOU Y JIA D M. Study on rubber/organic montmorillonite nanocomposites: Influence of different modification processes[J]. Elastomers, 2002, 1(4): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TXTZ200204009.htm

    [16]

    REN H, ZHU J, BI Y, et al. One-step fabrication of transparent hydrophobic silica aerogels via in situ surface modification in drying process[J]. Journal of Sol-Gel Science and Technology, 2016, 80(3): 1-7.

    [17]

    易宁波, 姜波, 黄玉东, 等. 绢云母改性及其在高分子材料中的应用进展[J]. 化学与黏合, 2010, 32(5): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201005015.htm

    YI N B, JIANG B, HUANG Y D, et al. Modification of sericite and its Application in polymer Materials[J]. Chemistry and Adhesives, 2010, 32(5): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201005015.htm

    [18]

    PENG L. Polymer modified clay minerals: A review[J]. Applied Clay Science, 2007, 38(1/2): 64-76.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1269
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2022-04-14
刊出日期:  2022-08-25

目录