浮选药剂性能判据应用进展

刘文刚, 丁盛院, 赵亮, 郑永兴, 刘文宝. 浮选药剂性能判据应用进展[J]. 矿产保护与利用, 2023, 43(3): 17-21. doi: 10.13779/j.cnki.issn1001-0076.2023.03.002
引用本文: 刘文刚, 丁盛院, 赵亮, 郑永兴, 刘文宝. 浮选药剂性能判据应用进展[J]. 矿产保护与利用, 2023, 43(3): 17-21. doi: 10.13779/j.cnki.issn1001-0076.2023.03.002
LIU Wengang, DING Shengyuan, ZHAO Liang, ZHENG Yongxing, LIU Wenbao. Application Progress for Performance Criteria of Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 17-21. doi: 10.13779/j.cnki.issn1001-0076.2023.03.002
Citation: LIU Wengang, DING Shengyuan, ZHAO Liang, ZHENG Yongxing, LIU Wenbao. Application Progress for Performance Criteria of Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 17-21. doi: 10.13779/j.cnki.issn1001-0076.2023.03.002

浮选药剂性能判据应用进展

  • 基金项目: 省部共建复杂有色金属资源清洁利用国家重点实验开放基金(CNMRCUKF2201)
详细信息
    作者简介: 刘文刚(1981—),男,山东潍坊人,教授、博士生导师,主要从事新型浮选药剂开发及含镁非金属高效利用方面相关研究,E-mail:liuwengang@mail.neu.edu.cn
  • 中图分类号: TD91;TD923+.1

Application Progress for Performance Criteria of Flotation Reagents

  • 随着药剂性质研究理论和方法的不断进步,浮选药剂构效关系也从定性分析逐步转变至定量研究阶段。定量研究的关键是确定一些可预先判断药剂分选性能的原理或准则,即浮选药剂性能判据。介绍了目前常见的浮选药剂性能判据及其优缺点,以期为高效浮选药剂的研发提供依据。性能判据按大类可分为药剂性质判据、基团或键合原子性质判据以及结合能判据等。这些判据多关注药剂与矿物表面的作用过程,导致其在使用过程中多起到筛选作用。为开发新型高效的浮选药剂,需要依托浮选药剂与矿物作用强弱的表征理论和方法,有针对性地选取浮选药剂性质参数,建立性质参数与作用强弱的相关关系,从而形成新的、更高效的药剂性能判据。

  • 加载中
  • [1]

    王淀佐, 邱冠周, 胡岳华. 资源加工学[M]. 北京: 科学出版社, 2005.

    WANG D Z , QIU G Z, HU Y H. Science of resource processing[M]. BeiJing: Science Press, 2005.

    [2]

    ГЛЕМБОЦКИЙ А В, 韩树山. 已知性质的浮选药剂的寻找与《设计》[J]. 国外金属矿选矿, 1973(10): 42−44.

    ГЛЕМБОЦКИЙ А B, HAN S S. Search and design of flotation reagents with known properties[J]. Beneficiation of metal ore abroad, 1973(10): 42−44.

    [3]

    王淀佐. 选矿与冶金药剂分子设计[M]. 长沙: 中南工业大学出版社, 1996.

    WANG D Z. Molecular Design of reagent in Mineral Processing and Metallurgy [M]. Changsha: Central South University of Technology Press, 1996.

    [4]

    朱玉霜. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.

    ZHU Y S. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996.

    [5]

    陈建华, 冯其明, 卢毅屏. 浮选药剂亲固基团的设计[J]. 有色金属, 1999, 51(2): 19−23.

    CHEN J H, FENG Q M, LU Y P. Design of solidophilic groups of flotation reagents[J]. Nonferrous Metals, 1999, 51(2): 19−23.

    [6]

    朱建光, 伍喜庆. 同分异构原理在合成氧化矿捕收剂中的应用[J]. 有色金属, 1990, 42(3): 32−38.

    ZHU J G, WU X Q. Application of isomerism principle in the synthesis of oxide ore collector[J]. Nonferrous Metals, 1990, 42(3): 32−38.

    [7]

    LIU R Q, SUN W, HU Y H, et al. New collectors for the flotation of unactivated marmatite[J]. Minerals Engineering, 2010, 23(2): 99−103. doi: 10.1016/j.mineng.2009.10.010

    [8]

    张行荣, 刘龙利, 吴桂叶, 等. 浮选药剂分子结构设计原理概述[J]. 矿冶, 2013, 22(3): 25−29. doi: 10.3969/j.issn.1005-7854.2013.03.006

    ZHANG X R, LIU L L, WU G Y et al. Overview of molecular structure design principle of flotation reagents[J]. Mining and Metallurgy, 2013, 22(3): 25−29. doi: 10.3969/j.issn.1005-7854.2013.03.006

    [9]

    王福良, 孙传尧. 利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为[J]. 国外金属矿选矿, 2008(6): 25−27.

    WANG F L, SUN C Y. Analysis of Flotation behavior of unactivated white lead ore by Xanthate collector using molecular mechanics[J]. Foreign metal ore processing, 2008(6): 25−27.

    [10]

    HUANG Z Q, ZHONG H, WANG S, et al. Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate minerals[J]. Minerals Engineering, 2014, 56: 145−154. doi: 10.1016/j.mineng.2013.11.006

    [11]

    PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110.

    [12]

    吴桂叶, 张杰, 李松清, 等. 一种氟碳铈矿捕收剂的设计筛选及浮选性能研究[J]. 中国矿业, 2014, 23(2): 273−275.

    WU G Y, ZHANG J, LI S Q, et al. Research on design, screening and flotation performance of a cerium fluocarbon collector[J]. China Mining Industry, 2014, 23(2): 273−275.

    [13]

    MARABINI A M, CIRIACHI M, PLESCIA M, et al. Chelating reagents for flotation[J]. Minerals Engineering, 2007, 20(10): 1014−1025. doi: 10.1016/j.mineng.2007.03.012

    [14]

    任霞, 王珏, 孙会敏, 等. 表面活性剂临界胶束浓度测定方法的建立和比较[J]. 中国药事, 2019, 34(8): 916−924. doi: 10.16153/j.1002-7777.2020.08.010

    REN X, WANG J, SUN H M, et al. Establishment and comparison of methods for determination of critical micelle concentration of surfactants[J]. Chinese Journal of Pharmaceutical Sciences, 2019, 34(8): 916−924. doi: 10.16153/j.1002-7777.2020.08.010

    [15]

    王淀佐. 浮选药剂的结构与性能—一百种含硫有机浮选剂的分子设计[J]. 有色金属(选矿部分), 1979(2): 12−26.

    WANG D Z. Structure and properties of flotation reagents−Molecular design of one hundred sulfur−containing organic flotation agents[J]. Nonferrous Metals (Mineral Processing Section), 1979(2): 12−26.

    [16]

    高山, 麻军法. 精制蛋黄卵磷脂亲水−亲油平衡值测定及其在鸦胆子油乳注射液中的应用[J]. 中国药业, 2011, 20(20): 21−23. doi: 10.3969/j.issn.1006-4931.2011.20.012

    GAO S, MA J. Determination of hydrophilic and lipophilic balance value of lecithin from refined egg yolk and its application in Brucea javanica oil Emulsion injection[J]. China Pharmaceutical Industry, 2011, 20(20): 21−23. doi: 10.3969/j.issn.1006-4931.2011.20.012

    [17]

    李敏. 电负性标度及其应用[D]. 大连: 大连理工大学, 2012.

    LI M. Electronegativity scale and its application [D]. Dalian: Dalian University of Technology, 2012.

    [18]

    冯成建, 张建树. 用电负性原理定量计算捕收剂非极性基长度的意义及应用[J]. 矿产综合利用, 2003(4): 15−19. doi: 10.3969/j.issn.1000-6532.2003.04.004

    FENG C J, ZHANG J S. Significance and application of quantitative calculation of non−polar base length of collector based on electronegativity principle[J]. Comprehensive Utilization of Mineral Resources, 2003(4): 15−19. doi: 10.3969/j.issn.1000-6532.2003.04.004

    [19]

    刘文刚. 新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究[D]. 沈阳, 东北大学, 2010.

    LIU W G. Synthesis and flotation performance of a new type of hematite desilication collector [D]. Shenyang, Northeast University, 2010.

    [20]

    王淀佐. 浮选剂作用原理及应用[D]. 北京: 冶金工业出版社, 1982.

    WANG D Z. Principle and Application of flotation agent [D]. Beijing: Metallurgical Industry Press, 1982.

    [21]

    LIU G Y, ZHONG H, DAI T G. Investigation of the effect of N−substituents on performance of thionocarbamates as selective collectors for copper suldes by abinitio calculations[J]. Minerals Engineering, 2008, 21: 1050−1054. doi: 10.1016/j.mineng.2008.04.017

    [22]

    曹飞. 基于密度泛函理论的硫氨酯捕收剂的设计合成及机理研究[D]. 北京科技大学, 2016.

    CAO F. Design, synthesis and mechanism study of thiamine ester collector based on density functional theory [D]. University of Science and Technology Beijing, 2016.

    [23]

    钟宏, 张湘予, 马鑫, 等. 酰氨基黄药的制备及其对黄铜矿、黄铁矿的浮选性能研究[J]. 矿产保护与利用, 2021, 41(2): 10.

    ZHONG H, ZHANG X Y, MA X, et al. Study on preparation of acyl−amino xanthate and its flotation performance to chalcopyrite and pyrite [J]. Mineral Protection and Utilization, 201, 41 (2) : 10.

    [24]

    YANG X L, ALBIJANIC B, LIU G Y, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032

    [25]

    张丹, 晁聪, 李玉坤, 等. 定量构效关系应用于水中有机污染物降解过程的研究进展[J]. 化工环保, 2021, 41(4): 418−426.

    ZHANG D, CHAO C, LI Y K, et al. Research progress of quantitative structure−activity relationship applied to the degradation process of organic pollutants in water [J]. Chemical Environmental Protection, 201, 41 (4) : 418−426.

    [26]

    HANSCH C, MALONEY P P, FUJITA T, et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients[J]. Nature, 1962, 194: 178−180.

    [27]

    王淀佐. 浮选剂的结构与性能(Ⅰ)[J]. 中南矿冶学院学报, 1980(4): 7−15.

    WANG D Z. Structure and Properties of flotation agent (Ⅰ)[J]. Journal of Central South Institute of Mining and Metallurgy, 1980(4): 7−15.

    [28]

    YANG X L, ALBIJANIC B, ZHOU Y, et al. Using 3D−QSAR to predict the separation efficiencies of flotation collectors: Implications for rational design of non−polar side chains[J]. Minerals Engineering, 2018, 129: 112−119. doi: 10.1016/j.mineng.2018.09.026

    [29]

    HU Y H, CHEN P, SUN W. Study on quantitative structure−activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation[J]. Minerals Engineering, 2012, 26: 24−33. doi: 10.1016/j.mineng.2011.10.007

    [30]

    谭鑫. 钨锡矿物螯合捕收剂靶向性分子设计及其作用机理研究[D]. 东北大学, 2017.

    TAN X. Study on molecular design and mechanism of targeting of Tungsten−tin mineral chelating collector [D]. Northeastern University, 2017.

    [31]

    陈硕, 李非凡, 孙国辉, 等. QSAR 建模及其在抗病毒药物设计与筛选中的研究进展[J]. 化学试剂, 2021, 43(7): 895−905.

    CHEN S, LI F F, SUN G H, et al. Research progress of QSAR modeling and its application in antiviral drug design and screening [J]. Chemical Reagents, 21, 43 (7) : 895−905.

    [32]

    RATH S S, SAHOO H, DAS B, et al. Density functional calculations of amines on the (101) face of quartz[J]. Minerals Engineering, 2014, 69: 57−64. doi: 10.1016/j.mineng.2014.07.007

    [33]

    REN L Y, QIU H, ZHANG Y M, et al. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal[J]. Powder Technology, 2018, 338: 180−189. doi: 10.1016/j.powtec.2018.07.026

    [34]

    薛正扬. 石墨烯量子点在生物医学中应用的分子动力学研究[D]. 杭州: 浙江大学, 2019.

    XUE Z Y. Molecular dynamics of graphene quantum dots applied in biomedicine [D]. Hangzhou: Zhejiang University, 2019.

    [35]

    郝海青, 李丽匣, 张晨, 等. 经典分子动力学模拟在矿物浮选研究中的应用[J]. 矿产保护与利用, 2018(3): 9−16. doi: 10.13779/j.cnki.issn1001-0076.2018.03.002

    HAO H Q, LI L X, ZHANG C et al. Application of classical molecular dynamics simulation in mineral flotation[J]. Mineral Conservation and Utilization, 2018(3): 9−16. doi: 10.13779/j.cnki.issn1001-0076.2018.03.002

    [36]

    郭丽娜, 李志红, 朱张磊, 等. 阳离子捕收剂对高岭石的捕收性能及动力学模拟[J]. 中国矿业, 2017, 26(5): 112−116+121. doi: 10.3969/j.issn.1004-4051.2017.05.021

    GUO L N, LI Z H, ZHU Z L et al. Performance and kinetics simulation of cationic collector for kaolinite[J]. China Mining Industry, 2017, 26(5): 112−116+121. doi: 10.3969/j.issn.1004-4051.2017.05.021

  • 加载中
计量
  • 文章访问数:  441
  • PDF下载数:  192
  • 施引文献:  0
出版历程
收稿日期:  2023-08-11
刊出日期:  2023-06-15

目录