Application Progress for Performance Criteria of Flotation Reagents
-
摘要:
随着药剂性质研究理论和方法的不断进步,浮选药剂构效关系也从定性分析逐步转变至定量研究阶段。定量研究的关键是确定一些可预先判断药剂分选性能的原理或准则,即浮选药剂性能判据。介绍了目前常见的浮选药剂性能判据及其优缺点,以期为高效浮选药剂的研发提供依据。性能判据按大类可分为药剂性质判据、基团或键合原子性质判据以及结合能判据等。这些判据多关注药剂与矿物表面的作用过程,导致其在使用过程中多起到筛选作用。为开发新型高效的浮选药剂,需要依托浮选药剂与矿物作用强弱的表征理论和方法,有针对性地选取浮选药剂性质参数,建立性质参数与作用强弱的相关关系,从而形成新的、更高效的药剂性能判据。
Abstract:With the development of the theory and method of chemical properties research, the relationship between the structure and properties of flotation reagents has gradually changed from qualitative analysis to quantitative research. The key of quantitative research is to determine some principles or criteria that can judge the separation performance of reagents in advance, that is, the performance criteria of flotation reagents. This paper briefly introduces the common design criteria of flotation agents and their advantages and disadvantages, in order to provide a basis for the research and development of high−efficiency flotation agents. The design criteria can be divided into chemical property criterion, group or bonded atom property criterion and binding energy criterion. These criteria pay more attention to the interaction process between the reagent and the mineral surface, which leads to its screening function in the process of use. In order to develop novel and efficient flotation agents, it is necessary to rely on the characterization theory and method of the strength of the flotation reagents and minerals, select the property parameters of flotation reagents and establish the correlation between the property parameters and the strength of the action, so as to form a novel and more efficient performance criterion of flotation reagents.
-
-
[1] 王淀佐, 邱冠周, 胡岳华. 资源加工学[M]. 北京: 科学出版社, 2005.
WANG D Z , QIU G Z, HU Y H. Science of resource processing[M]. BeiJing: Science Press, 2005.
[2] ГЛЕМБОЦКИЙ А В, 韩树山. 已知性质的浮选药剂的寻找与《设计》[J]. 国外金属矿选矿, 1973(10): 42−44.
ГЛЕМБОЦКИЙ А B, HAN S S. Search and design of flotation reagents with known properties[J]. Beneficiation of metal ore abroad, 1973(10): 42−44.
[3] 王淀佐. 选矿与冶金药剂分子设计[M]. 长沙: 中南工业大学出版社, 1996.
WANG D Z. Molecular Design of reagent in Mineral Processing and Metallurgy [M]. Changsha: Central South University of Technology Press, 1996.
[4] 朱玉霜. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996.
ZHU Y S. Chemical principle of flotation reagent [M]. Changsha: Central South University of Technology Press, 1996.
[5] 陈建华, 冯其明, 卢毅屏. 浮选药剂亲固基团的设计[J]. 有色金属, 1999, 51(2): 19−23.
CHEN J H, FENG Q M, LU Y P. Design of solidophilic groups of flotation reagents[J]. Nonferrous Metals, 1999, 51(2): 19−23.
[6] 朱建光, 伍喜庆. 同分异构原理在合成氧化矿捕收剂中的应用[J]. 有色金属, 1990, 42(3): 32−38.
ZHU J G, WU X Q. Application of isomerism principle in the synthesis of oxide ore collector[J]. Nonferrous Metals, 1990, 42(3): 32−38.
[7] LIU R Q, SUN W, HU Y H, et al. New collectors for the flotation of unactivated marmatite[J]. Minerals Engineering, 2010, 23(2): 99−103. doi: 10.1016/j.mineng.2009.10.010
[8] 张行荣, 刘龙利, 吴桂叶, 等. 浮选药剂分子结构设计原理概述[J]. 矿冶, 2013, 22(3): 25−29. doi: 10.3969/j.issn.1005-7854.2013.03.006
ZHANG X R, LIU L L, WU G Y et al. Overview of molecular structure design principle of flotation reagents[J]. Mining and Metallurgy, 2013, 22(3): 25−29. doi: 10.3969/j.issn.1005-7854.2013.03.006
[9] 王福良, 孙传尧. 利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为[J]. 国外金属矿选矿, 2008(6): 25−27.
WANG F L, SUN C Y. Analysis of Flotation behavior of unactivated white lead ore by Xanthate collector using molecular mechanics[J]. Foreign metal ore processing, 2008(6): 25−27.
[10] HUANG Z Q, ZHONG H, WANG S, et al. Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate minerals[J]. Minerals Engineering, 2014, 56: 145−154. doi: 10.1016/j.mineng.2013.11.006
[11] PRADIP, RAI B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing, 2003, 72(1/2/3/4): 95−110.
[12] 吴桂叶, 张杰, 李松清, 等. 一种氟碳铈矿捕收剂的设计筛选及浮选性能研究[J]. 中国矿业, 2014, 23(2): 273−275.
WU G Y, ZHANG J, LI S Q, et al. Research on design, screening and flotation performance of a cerium fluocarbon collector[J]. China Mining Industry, 2014, 23(2): 273−275.
[13] MARABINI A M, CIRIACHI M, PLESCIA M, et al. Chelating reagents for flotation[J]. Minerals Engineering, 2007, 20(10): 1014−1025. doi: 10.1016/j.mineng.2007.03.012
[14] 任霞, 王珏, 孙会敏, 等. 表面活性剂临界胶束浓度测定方法的建立和比较[J]. 中国药事, 2019, 34(8): 916−924. doi: 10.16153/j.1002-7777.2020.08.010
REN X, WANG J, SUN H M, et al. Establishment and comparison of methods for determination of critical micelle concentration of surfactants[J]. Chinese Journal of Pharmaceutical Sciences, 2019, 34(8): 916−924. doi: 10.16153/j.1002-7777.2020.08.010
[15] 王淀佐. 浮选药剂的结构与性能—一百种含硫有机浮选剂的分子设计[J]. 有色金属(选矿部分), 1979(2): 12−26.
WANG D Z. Structure and properties of flotation reagents−Molecular design of one hundred sulfur−containing organic flotation agents[J]. Nonferrous Metals (Mineral Processing Section), 1979(2): 12−26.
[16] 高山, 麻军法. 精制蛋黄卵磷脂亲水−亲油平衡值测定及其在鸦胆子油乳注射液中的应用[J]. 中国药业, 2011, 20(20): 21−23. doi: 10.3969/j.issn.1006-4931.2011.20.012
GAO S, MA J. Determination of hydrophilic and lipophilic balance value of lecithin from refined egg yolk and its application in Brucea javanica oil Emulsion injection[J]. China Pharmaceutical Industry, 2011, 20(20): 21−23. doi: 10.3969/j.issn.1006-4931.2011.20.012
[17] 李敏. 电负性标度及其应用[D]. 大连: 大连理工大学, 2012.
LI M. Electronegativity scale and its application [D]. Dalian: Dalian University of Technology, 2012.
[18] 冯成建, 张建树. 用电负性原理定量计算捕收剂非极性基长度的意义及应用[J]. 矿产综合利用, 2003(4): 15−19. doi: 10.3969/j.issn.1000-6532.2003.04.004
FENG C J, ZHANG J S. Significance and application of quantitative calculation of non−polar base length of collector based on electronegativity principle[J]. Comprehensive Utilization of Mineral Resources, 2003(4): 15−19. doi: 10.3969/j.issn.1000-6532.2003.04.004
[19] 刘文刚. 新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究[D]. 沈阳, 东北大学, 2010.
LIU W G. Synthesis and flotation performance of a new type of hematite desilication collector [D]. Shenyang, Northeast University, 2010.
[20] 王淀佐. 浮选剂作用原理及应用[D]. 北京: 冶金工业出版社, 1982.
WANG D Z. Principle and Application of flotation agent [D]. Beijing: Metallurgical Industry Press, 1982.
[21] LIU G Y, ZHONG H, DAI T G. Investigation of the effect of N−substituents on performance of thionocarbamates as selective collectors for copper suldes by abinitio calculations[J]. Minerals Engineering, 2008, 21: 1050−1054. doi: 10.1016/j.mineng.2008.04.017
[22] 曹飞. 基于密度泛函理论的硫氨酯捕收剂的设计合成及机理研究[D]. 北京科技大学, 2016.
CAO F. Design, synthesis and mechanism study of thiamine ester collector based on density functional theory [D]. University of Science and Technology Beijing, 2016.
[23] 钟宏, 张湘予, 马鑫, 等. 酰氨基黄药的制备及其对黄铜矿、黄铁矿的浮选性能研究[J]. 矿产保护与利用, 2021, 41(2): 10.
ZHONG H, ZHANG X Y, MA X, et al. Study on preparation of acyl−amino xanthate and its flotation performance to chalcopyrite and pyrite [J]. Mineral Protection and Utilization, 201, 41 (2) : 10.
[24] YANG X L, ALBIJANIC B, LIU G Y, et al. Structure–activity relationship of xanthates with different hydrophobic groups in the flotation of pyrite[J]. Minerals Engineering, 2018, 125: 155−164. doi: 10.1016/j.mineng.2018.05.032
[25] 张丹, 晁聪, 李玉坤, 等. 定量构效关系应用于水中有机污染物降解过程的研究进展[J]. 化工环保, 2021, 41(4): 418−426.
ZHANG D, CHAO C, LI Y K, et al. Research progress of quantitative structure−activity relationship applied to the degradation process of organic pollutants in water [J]. Chemical Environmental Protection, 201, 41 (4) : 418−426.
[26] HANSCH C, MALONEY P P, FUJITA T, et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients[J]. Nature, 1962, 194: 178−180.
[27] 王淀佐. 浮选剂的结构与性能(Ⅰ)[J]. 中南矿冶学院学报, 1980(4): 7−15.
WANG D Z. Structure and Properties of flotation agent (Ⅰ)[J]. Journal of Central South Institute of Mining and Metallurgy, 1980(4): 7−15.
[28] YANG X L, ALBIJANIC B, ZHOU Y, et al. Using 3D−QSAR to predict the separation efficiencies of flotation collectors: Implications for rational design of non−polar side chains[J]. Minerals Engineering, 2018, 129: 112−119. doi: 10.1016/j.mineng.2018.09.026
[29] HU Y H, CHEN P, SUN W. Study on quantitative structure−activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation[J]. Minerals Engineering, 2012, 26: 24−33. doi: 10.1016/j.mineng.2011.10.007
[30] 谭鑫. 钨锡矿物螯合捕收剂靶向性分子设计及其作用机理研究[D]. 东北大学, 2017.
TAN X. Study on molecular design and mechanism of targeting of Tungsten−tin mineral chelating collector [D]. Northeastern University, 2017.
[31] 陈硕, 李非凡, 孙国辉, 等. QSAR 建模及其在抗病毒药物设计与筛选中的研究进展[J]. 化学试剂, 2021, 43(7): 895−905.
CHEN S, LI F F, SUN G H, et al. Research progress of QSAR modeling and its application in antiviral drug design and screening [J]. Chemical Reagents, 21, 43 (7) : 895−905.
[32] RATH S S, SAHOO H, DAS B, et al. Density functional calculations of amines on the (101) face of quartz[J]. Minerals Engineering, 2014, 69: 57−64. doi: 10.1016/j.mineng.2014.07.007
[33] REN L Y, QIU H, ZHANG Y M, et al. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal[J]. Powder Technology, 2018, 338: 180−189. doi: 10.1016/j.powtec.2018.07.026
[34] 薛正扬. 石墨烯量子点在生物医学中应用的分子动力学研究[D]. 杭州: 浙江大学, 2019.
XUE Z Y. Molecular dynamics of graphene quantum dots applied in biomedicine [D]. Hangzhou: Zhejiang University, 2019.
[35] 郝海青, 李丽匣, 张晨, 等. 经典分子动力学模拟在矿物浮选研究中的应用[J]. 矿产保护与利用, 2018(3): 9−16. doi: 10.13779/j.cnki.issn1001-0076.2018.03.002
HAO H Q, LI L X, ZHANG C et al. Application of classical molecular dynamics simulation in mineral flotation[J]. Mineral Conservation and Utilization, 2018(3): 9−16. doi: 10.13779/j.cnki.issn1001-0076.2018.03.002
[36] 郭丽娜, 李志红, 朱张磊, 等. 阳离子捕收剂对高岭石的捕收性能及动力学模拟[J]. 中国矿业, 2017, 26(5): 112−116+121. doi: 10.3969/j.issn.1004-4051.2017.05.021
GUO L N, LI Z H, ZHU Z L et al. Performance and kinetics simulation of cationic collector for kaolinite[J]. China Mining Industry, 2017, 26(5): 112−116+121. doi: 10.3969/j.issn.1004-4051.2017.05.021
-
计量
- 文章访问数: 441
- PDF下载数: 192
- 施引文献: 0