Determination of Nb and Ta in Ores and Metallurgical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Ethanol as a Sensitizer
-
摘要:
电感耦合等离子体发射光谱法(ICP-AES)在铌钽测定方面获得广泛应用, 但灵敏度较低、检出限较高, 不能满足矿石和选冶样品中的低含量铌钽的检测要求。本文优化了ICP-AES测试过程中多种有机试剂的增敏效果, 结果表明:样品采用氢氟酸-硝酸-硫酸敞开酸溶, 选择乙醇作增敏剂, 雾化效率最佳, 当乙醇浓度为6%时, 原子线Nb 292.781 nm、Ta 240.063 nm的灵敏度分别增强了180.5%和265.5%;铌的检出限由不加乙醇的5.85 μg/g降低到3.22 μg/g, 钽的检出限由不加乙醇的10.65 μg/g降低到5.03 μg/g; Nb2O5回收率为97.7%~101.9%, Ta2O5回收率为96.8%~97.2%;方法精密度(RSD) < 6%。本方法适用于低含量和高含量铌钽的同时测定, 尤其有利于选冶流程样品中同一批次的精矿、中矿和尾矿的同时测定, 克服了以往分别采用光谱法和质谱法测定所产生的仪器间误差导致回收率吻合程度不好的缺陷。
Abstract:Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) has been widely used in the determination of Nb and Ta, but its low sensitivity and high detection limits cannot meet the analysis requirement of low content Nb and Ta in ores and metallurgical samples. The sensitizing effect of many organic reagents was optimized in the ICP-AES determination. The results show that ethanol is the best sensitizer for determination of Nb and Ta after the samples were decomposed by open acid-solution with HF-HNO3-H2SO4 mixture. When the concentration of ethanol reaches 6%, the sensitivities of Nb (292.781 nm) and Ta (240.063 nm) have increases of 180.5% and 265.5%, respectively. Moreover, the detection limits of Nb and Ta were reduced from 5.85 to 3.22 μg/g and from 10.65 to 5.03 μg/g, respectively. The recoveries of Nb2O5 and Ta2O5 were 97.7%-101.9% and 96.8%-97.2%, respectively. The precision of this method was less than 6%. The method is suitable for the simultaneous determination of low and high contents of Nb and Ta, and is particularly suitable for determining Nb and Ta in ore concentrates, medium ores and the tailings of metallurgical samples from the same batch, which overcomes the bad agreement of recovery between ICP-AES and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).
-
表 1 谱线选择与增敏效果
Table 1. The selection of spectral line and sensitization effect
元素 谱线长度
(nm)响应值 增敏倍数
(%)灵敏度改善情况 Nb 309.418 -757.5 - 标准不成线性,不采用 313.079 45467.4 150.1 干扰较多,不采用 269.706 6267.8 155.2 灵敏度较低,不采用 292.781 13563.8 155.5 增敏效果较好,干扰小,采用 Ta 226.230 1767.9 162.5 灵敏度低,不采用 233.198 541.2 173.4 灵敏度低,不采用 248.87 2666.1 183.2 灵敏度低,不采用 267.59 5725.6 - - 240.063 6213.2 170.3 灵敏度相对较高,谱线简单,采用 表 2 ICP-AES工作条件
Table 2. Working parameters of the ICP-AES instrument
工作参数 设定条件 工作参数 设定条件 入射功率 1300 W 积分时间 6 s 雾化气(Ar)流速 0.80 L/min 观测高度 12 mm 冷却气(Ar)流速 14.0 L/min Nb分析线 292.781 nm 辅助气(Ar)流速 1.0 L/min Ta分析线 240.063 nm 进样速度 1.48 L/min 清洗时间 30 s 表 3 加入乙醇前后的方法检出限对比
Table 3. A comparison of the detection limits of Nb and Ta with or without ethanol
元素 加入乙醇
情况元素测定值
(ng/mL)标准偏差
(ng/mL)检出限
(μg/g)Nb2O5 不加乙醇 0.0050.0170.0230.014
0.0060.0270.0110.009
0.0150.0020.0060.008 5.85 加6%乙醇 0.0080.0060.0110.004
0.0090.0140.0170.005
0.01 0.0030.0070.004 3.22 Ta2O5 不加乙醇 0.012 0.002-0.015 0.004
0.020.0310.004-0.004
-0.017 0.0090.0130.014 10.65 加6%乙醇 0.005 0.011 0.0090.004
0.0120.0210.007 0.003
0.0180.018 0.0040.007 5.03 表 4 方法精密度和准确度
Table 4. The precision and accuracy tests of the method
标准物质编号 Nb2O5测定值(μg/g) 平均值
(μg/g)标准值
(μg/g)相对误差
(%)RSD(%) GBW 07184 59.25 62.34 60.65 57.82 55.2 64.5
53.85 55.10 60.25 58.74 64.2359.27 56.62 4.68 6.1 GBW 07185 5264.9 5233.5 5058.1 5201.4 5376.6
5250.4 5369.2 5420.3 5237.8 5201.0 5117.05248.2 5200 0.93 2.1 标准物质编号 Ta2O5测定值(μg/g) 平均值
(μg/g)标准值
(μg/g)相对误差
(%)RSD(%) GBW 07184 113.52 112.25 108.25 111.56 107.21 103.89
101.25 104.52 104.12 101.36 118.24107.83 108.11 -0.26 4.7 GBW 07185 9888.5 10680.0 10348.8 10322.4 10284.5 10635.6
10203.8 10381.9 9901.9 10203.6 10295.310286.0 10200 0.84 2.4 表 5 实际样品分析
Table 5. Analytical results of Nb and Ta in the actual samples
样品类型 Nb2O5 Ta2O5 ICP-AES
(本法)国家标准
方法相对误差
(%)ICP-AES
(本法)国家标准
方法相对误差
(%)精矿 12.36% 12.09% 2.23 4.09% 4.02% 1.74 尾矿 11.81 μg/g 12.56 μg/g -5.97 5.65 μg/g 5.27 μg/g -7.21 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]