Review on the Application of X-ray Diffraction in Gem Identification, Synthesis and Crystal Structure Research
-
摘要: 因宝石检测常附带无损要求、宝石评价具科学性和不确定性等特点,X射线衍射(XRD)在宝石学这门矿物学的分支学科中的应用具有特殊性,其应用领域主要集中在三个方面。①宝石鉴定领域:对单晶宝石和多晶宝石进行物相鉴定、宝石产地特征研究以及宝石矿物多型的种类划分等。例如根据XRD图谱,可将品种繁多的微晶石英隐晶质变种玉髓中不同的SiO2质矿物相精确区分;通过黏土矿物成分及其含量可将鸡血石中"地"的种类进行划分。②宝石矿物的晶体结构研究:对成分复杂的单晶宝石进行晶体化学分析、获取矿物类质同象替代情况、利用结晶度划分宝石品质。例如晶格参数中的c/a比值可将绿柱石的Al八面体类质同象替代和Be四面体类质同象替代进行区分;软玉中通过XRD数据计算出的结晶度与软玉的品质关系密切。③宝石学研究技术的开发:对宝石的优化处理过程进行监测,在宝石合成过程中检验矿物晶形大小、结晶质量及内应力等,以有机宝石的晶体结构为基础的人工养殖技术研究。例如尖晶石在热处理过程中,Mg离子由四面体中的T位迁移至八面体中的M位,导致M-O和T-O键长随温度变化,并反映在尖晶石的色调中;在托帕石合成过程中,XRD数据显示770~800℃时形成含氟托帕石(与天然托帕石结构相同),而在950℃和1000℃出现含氟托帕石离解成刚玉和莫来石。目前,我国在宝石学的XRD应用方面起步较晚,国外在宝石鉴定、优化与合成方面的应用相对成熟。本文认为,该技术与扫描电镜、质子探针等分析技术的联用仍有很大发展空间。Abstract: Due to the nondestructive requirements of gem testing, evaluation of precious stones shows characteristics of science and uncertainty. Gemological application of X-ray Diffraction (XRD) is specialized, with its application mainly concentrated in three aspects:① Gemstone identification:phase identification of the monocrystalline gemstones and polycrystalline gemstones; origin of the gemstones; classification of the pleomorphic gem minerals. For example, according to the XRD patterns of microcrystalline cryptocrystalline quartz variants, different silica mineral phases of the chalcedony can be distinguished accurately; types of Di in bloodstone can be distinguished through the composition and content of clay mineral. ② Research on crystal structure of the gem minerals:analysis of crystal chemistry of the monocrystalline gems with complex composition; situation of the substitution of mineral isomorphism; quality of the gem by using the degree of crystallinity. For example, through the c/a ratio in lattice parameters of beryl, aluminium octahedral isomorphism and the beryllium tetrahedral isomorphism can be distinguished. The relationship between the crystallinity calculated from XRD data and the quality of nephrite is close. ③ Development of gemological research technology:to monitor the process of gemstone optimization; to inspect the mineral crystal size, crystalline quality and internal stress during the synthetic process of gemstones; to research the artificial breeding technology based on the crystal structure of organic gemstones. Take the heat treatment process of spinel as example:magnesium irons moved from octahedral M-O to tetrahedral T-O, resulting in the bond length of M-O and T-O changing upon temperature and being reflected in the spinel color. During the synthesis process of topaz, XRD data shows that the structure of the formed fluorine topaz is similar to natural topaz at 770-800℃. At 950℃ and 1000℃, the fluorine topaz is decomposed to corundum and mullite. XRD research in the gemological application began relatively recently in China. In other countries, application in gem identification, optimization and synthesis are relatively mature. There is still much room for the development of XRD when combined with other technologies such as the Scanning Electron Microscope and Proton Microprobe.
-
致密油因其平面分布范围广、资源储量大而成为现今全球非常规石油勘探开发的重要领域[1-5]。致密油的概念最早是用以描述致密砂岩中的石油[6]。随着勘探技术的进步,在很长一段时间内致密油被定义为以吸附或游离状态赋存于生油岩中,或与生油岩互层、紧邻的致密砂岩、致密碳酸盐岩等储集岩中,未经过大规模长距离运移的石油聚集[1]。这一定义包含了页岩油与致密岩油的含义,近几年随着对页岩油的成功勘探与开发,为了区别页岩油与致密油,逐渐将致密油定义为“以吸附或游离状态赋存于紧邻优质生油层系的致密储层中,经短距离运移而形成的石油聚集”[7]。致密油储层是指孔隙度一般小于10%、渗透率小于1×10−3 µm2的致密砂岩、碳酸盐岩等。
鄂尔多斯盆地上三叠统延长组长7段沉积时期发育大型内陆凹陷湖盆[8-10],沉积了一套以黑色页岩和暗色泥岩为主的富有机质生油岩系,为盆地延长组油藏最主要的烃源岩[11-13]。长期以来,研究区延长组的石油勘探主要集中于长8段、长6段等地层,长7段的勘探程度较低。随着近几年非常规油气勘探的不断投入和页岩油的突破,长7段逐渐成为勘探重点[14-18]。目前,研究区长7段主要集中于沉积相和烃源岩研究,对致密油储层的研究相对较少,特别是对源内薄层致密砂岩储层微观特征研究不足,对致密油储层发育的控制因素认识不清,制约着致密油的进一步勘探与开发。本文综合利用铸体薄片、扫面电镜观察和能谱分析以及高压压汞孔喉结构分析、XRD黏土矿物分析等方法,分析了长7段薄层致密砂岩储层特征及储层发育的主控因素,为鄂尔多斯盆地致密油的勘探开发提供依据。
1. 区域地质特征
鄂尔多斯盆地为准克拉通盆地,可划分为伊盟隆起、西缘逆冲带、天环坳陷、伊陕斜坡、晋西挠褶带和渭北隆起6个一级构造单元,陕北地区位于伊陕斜坡中东部(图1)。晚三叠世开始,鄂尔多斯盆地沉积演化进入内陆差异沉降盆地的形成和发展时期[19],到晚三叠世末期,盆地整体沉降,整体构造活动微弱,地层产状平缓,研究区内为一向西微倾的单斜构造。
上三叠统延长组为河流–湖泊相沉积,发育一套中厚层的中细砂岩、粉砂岩和深灰色、灰黑色泥页岩。根据岩电特征及含油性差异,延长组自下而上被划分为10个油层组(长1—长10),其中长7油层组沉积时期为湖盆鼎盛时期,发育一套厚度相对稳定、富含有机质的泥页岩层,为延长组油藏的主力烃源岩,也是鄂尔多斯盆地页岩油富集的最主要层段。
2. 致密油储层特征
岩石薄片鉴定结果显示,陕北地区长7段致密砂岩碎屑以石英、长石为主,少量岩屑,云母较发育(图2)。镜下观察石英表面光洁,部分晶面具波状消光。长石以斜长石、钾长石为主,斜长石聚片双晶发育,蚀变深,泥化、绢云母化。岩屑以酸性喷出岩、石英岩、花岗质岩、泥化碎屑为主。云母以黑云母为主,部分蚀变深,绿泥石化。粒间泥质以绿泥石、伊利石为主,重结晶,绢云母化,部分呈条带状分布。少量泥铁质,局部富集。经X射线衍射全岩分析,陕北地区长7段致密砂岩储层矿物组成主要为长石、石英、黏土矿物、方解石、白云石以及少量的黄铁矿、红金石和菱铁矿,其中长石含量最高(斜长石平均含量为45.92%,钾长石平均含量为13%),其次为石英(平均含量为18.7%)与黏土矿物(平均含量为15.9%),方解石平均含量为4.21%,白云石平均含量为1.67%。通过薄片鉴定和XRD全岩分析,明确研究区长7段致密砂岩类型主要为长石砂岩与岩屑长石砂岩。
图 2. 陕北地区长7段致密砂岩岩石学特征a. 岩石薄片特征(桥136井,1583.5 m,+),b. 岩石类型三角图,c. XRD全岩矿物分析(桥136井,1583.5 m)。Figure 2. Petrological characteristics of tight sandstone in Chang 7 member in northern Shaanxia. Characteristics of rock slices (Well Qiao 136, 1583.5 m, +), b. Triangle map of rock types, c. XRD analysis of whole rock minerals (Well Qiao 136, 1583.5 m).3. 储集特征
3.1 储层物性特征
本次研究对陕北地区长7段砂岩储层样品进行了物性测试,选取了15口井184件柱塞样。岩心取样的孔隙度、渗透率测定结果显示,陕北地区长7段致密砂岩储层较为致密,物性较差,其中孔隙度为2%~17%,平均9.98%,集中分布于8%~14%;渗透率分布范围(0.001~1.486)×10−3 µm2,平均0.54×10−3 µm2,主要分布于(0.01~0.5)×10−3 µm2(图3)。其中孔隙度2%~6%的主要为粉砂岩,占7.8%,孔隙度6%~14%的主要为中细砂岩,占82%;剩余部分样品存在微裂缝,孔隙度较大,占10.8%。
3.2 储集空间特征
通过30件铸体薄片和24件扫描电镜样品分析,陕北地区长7段致密砂岩主要发育次生孔隙及部分原生剩余孔隙。次生孔隙类型主要是粒间溶蚀孔隙、粒内溶蚀孔隙、填隙物晶间微孔隙及微裂缝(图4、5)。其中以长石溶蚀孔隙(图4a)、晶间微孔和微裂缝(图4c、5d)最为发育。长石溶蚀孔隙多呈狭长状(图5a),部分长石溶蚀孔隙呈圆状(图4b),通过图像测量长石溶蚀孔径分布范围为6~180 µm。粒间溶蚀孔隙主要是长石边界及填隙物溶蚀孔隙,孔隙多呈不规则形(图4a、5b)。扫描电镜图像中粒间溶蚀孔隙多呈不规则圆形(图5b),孔径较大,分布范围为10~240 µm。由于晶间微孔隙非常小,铸体薄片中较难分辨,主要通过扫描电镜分析来研究。晶间微孔类型主要为黏土矿物晶间孔(图5c),包括绿泥石晶间孔、伊利石晶间孔及高岭石晶间孔,孔径多小于20 µm。
图 4. 铸体薄片显示延长组7段致密储层储集空间特征a. 高135井,1783.6 m,长石溶蚀孔隙,粒间溶蚀孔隙(−);b. 高193井,2117 m,长石溶蚀孔隙,粒间溶蚀孔隙,铸膜孔(−);c. 丹288井,1106.8 m,微裂缝(+);d. 丹228井,1143.14 m,微裂缝(−)。Figure 4. Cast thin sections show the reservoir space characteristics of tight reservoirs in the 7th member of the Yanchang Formationa. Well Gao 135, 1783.6 m, feldspar dissolution pores, intergranular dissolution pores (−); b. Gao 193 well, 2117 m, feldspar dissolution pores, intergranular dissolution pores, cast film pores (−); c. Dan Well 288, 1106.8 m, micro-fractures (+); d. Dan 228 well, 1143.14 m, micro-fractures (−).图 5. 扫描电镜显示延长组7段致密储层储集空间特征a. 午100井,1937.5 m,长石粒内溶蚀孔隙,原生剩余粒间孔隙;b. 桥136井,1578.25 m,粒间溶蚀孔隙;c. 顺37井,1915.25 m,晶间微孔;d. 顺37井,1919.25 m,微裂缝。Figure 5. SEM shows the reservoir space characteristics of tight reservoirs in the 7th member of the Yanchang Formationa. Well Wu 100, 1937.5 m, intragranular dissolution pores of feldspar, primary remaining intergranular pores; b. Qiao 136 well, 1578.25 m, intergranular dissolution pores; c. Shun 37 well, 1915.25 m, intergranular micropores; d. Well Shun 37, 1919.25 m, micro-fractures.3.3 孔喉结构特征
通过10口井不同深度的致密砂岩样品进行高压压汞测试,根据毛管压力曲线特征、孔喉分布特征将长7段致密砂岩储层孔喉结构划分为4类:
Ⅰ类孔喉结构:砂岩类型主要为中砂岩与细砂岩,毛管曲线多出现左下凹的平台。排驱压力<1 MPa,图6a为高135井1783.6 m最大连通孔喉半径为0.756 µm,平均孔喉半径为0.05 µm,最大汞饱和度为98.26%,歪度为0.73,为粗歪度,表明孔喉以相对较大孔喉为主。
图 6. 长7段压汞曲线特征及孔喉半径分布a. 高135井,1783.6 m;b. 午230井,2061.3 m;c. 新140井,2080.4 m;d. 塞544井,2147.85 m。Figure 6. Characteristics of mercury intrusion curve and pore throat radius distribution in Chang 7 sectiona. Gao 135 well, 1783.6 m; b. Wu 230 well, 2061.3 m; c. Xin 140 well, 2080.4 m; d. Sai 544 well, 2147.85 m.Ⅱ类孔喉结构:砂岩类型主要为细砂岩,与Ⅰ类毛管压力曲线不同,没出现平台。排驱压力较Ⅰ类大,集中于1~3 MPa。图6b为午230井2061.3 m致密砂岩高压压汞曲线与孔喉半径分布图,其排驱压力为1.24 MPa,最大连通孔喉半径为0.593 µm,平均孔喉半径为0.015 µm,最大汞饱和度为91.01%,歪度为−0.59,为细歪度,表明孔喉以相对较小孔喉为主。
Ⅲ类孔喉结构:砂岩类型主要为细砂岩,曲线形态出现较明显的右上凸的形态。图6c为新140井2080.4 m深度砂岩样品毛管压力曲线与孔喉半径分布图,其排驱压力为4.71 MPa,最大连通孔喉半径为0.058 µm,平均孔喉半径为0.01 µm,最大汞饱和度为80.98%,歪度为−0.88,为细歪度,表明孔喉以相对较小孔喉为主。
Ⅳ类孔喉结构:砂岩类型多为细砂岩与粉砂岩。图6d为塞544井2147.85 m深度致密砂岩样品毛管压力曲线与孔喉半径分布图。其排驱压力为4.95 MPa,最大连通孔喉半径为0.148 µm,平均孔喉半径为0.03 µm,最大汞饱和度为70.15%,歪度为−0.49,为细歪度,表明孔喉以相对较小孔喉为主。
4. 砂岩储层成岩作用
综合利用铸体薄片、扫描电镜、XRD黏土矿物分析等资料,明确研究区长7段致密砂岩储层地质历史时期埋深较大,并且经历了复杂的成岩作用,主要有压实作用、胶结作用、溶蚀作用等。
4.1 压实作用
研究区长7段现今埋藏深度为1500~2100 m,通过埋藏史研究,长7段砂岩经历过3000 m的埋深,压实作用较为发育。在整个成岩过程中,随着埋深的增加,压实作用变强,碎屑矿物颗粒接触从点接触向点–线接触、线–线接触及缝合线接触过渡,可见碎屑颗粒接触关系有点–线接触、线–线接触和凹凸接触(图7a),以线接触为主,少见缝合线接触,云母等塑性矿物发生挤压变形(图7b)。
4.2 胶结作用
通过扫描电镜观察和XRD矿物分析,研究区长7段致密砂岩储层中胶结作用主要为黏土矿物胶结、碳酸盐胶结和硅质胶结。其中以黏土矿物胶结和碳酸盐胶结为主,硅质胶结作用相对较弱。
(1)黏土胶结
黏土矿物XRD分析,长7段致密砂岩中自生黏土矿物主要为绿泥石(平均含量为43.54%),其次为伊利石(平均含量20.42%)、高岭石(18.17%)及伊蒙混层(17.88%)(图8)。
绿泥石胶结物多为树叶状和针叶状,主要有两种赋存方式:一种是孔隙充填式产出(图9a),一种是围绕颗粒成薄膜式(图9b)。高岭石通常呈假六边形树叶状,伊利石多呈不规则片状或网状集合体产出(图9c),多以孔隙式充填为主。
图 9. 午230井长7段致密砂岩黏土矿物和硅质胶结物特征a. 塞544井,2142.83 m,绿泥石薄膜,孔隙填充绿泥石;b. 塞544井,孔隙充填高岭石;c. 午230井,2018.39 m,碳酸盐胶结物,伊利石;d. 高135井,1971.60 m,石英加大(Ⅱ-Ⅲ级)。Figure 9. Characteristics of clay minerals and siliceous cements of tight sandstone in Chang 7 Member of Well Wu 230a. Well Sai 544, 2142.83 m, chlorite film, pores filled with chlorite; b. Well Sai 544, pores filled with kaolinite; c. Well Wu 230, 2018.39 m, carbonate cement, illite; d. Well Gao 135, 1971.60 m, increased quartz (grade II-III).(2)碳酸盐胶结
长7段碳酸盐胶结普遍发育,以方解石为主(最高可达28%),另外发育铁方解石、铁白云石和白云石等碳酸盐胶结物。长7段碳酸盐胶结物主要为早期方解石连晶胶结,充填于孔隙中。晚期碳酸盐胶结物主要呈半自形到自形晶(图9c)充填孔隙,并交代碎屑颗粒。碳酸盐胶结物为方解石胶结,且主要为连晶胶结,表明碳酸盐胶结为早成岩阶段产物。
(3)硅质胶结
长7段致密砂岩硅质胶结物含量平均为1.6%,硅质胶结物多以Ⅰ—Ⅱ级石英的次生加大边和自生石英颗粒两种类型。在铸体薄片下,原生石英颗粒边界清晰(图4c,图7b),与次生石英边界之间通常为绿泥石或高岭石等黏土薄膜,次生石英加大边一般发育在原生颗粒局部,少见环边石英次生加大。
4.3 溶蚀作用
研究区长7段溶蚀作用主要为碎屑颗粒的溶蚀作用和填隙物的溶蚀作用,其中长石溶蚀最为发育。长石溶蚀主要是沿着长石解理缝溶蚀,形成长石粒内溶蚀孔隙(图4a、5a),长石和岩屑被彻底溶蚀后形成铸膜孔(图4b)。粒间不稳定填隙物发生部分溶蚀,从而产生粒间孔(图4a、4b、5b)。
4.4 成岩演化序列
基于陕北地区延长组长7段砂岩的骨架颗粒接触关系、孔隙结构、自生黏土矿物组合及泥岩镜质体反射率特征,划分了研究区长7段砂岩成岩阶段。砂岩骨架颗粒多呈线接触,压实作用较强;孔隙类型以粒间溶孔、粒内溶孔和黏土矿物晶间微孔为主;胶结作用以黏土胶结和碳酸盐胶结为主,黏土矿物以绿泥石为主,黏土矿物分析时伊蒙混层I/S中S层为30%,部分为40%,石英发育级次生加大;泥岩镜质体反射率Ro为0.65%~1.27%。据此判断研究区延长组长7段砂岩储层主要处于中成岩阶段A期(图10)。
早成岩A期,古地温较低,有机质未成熟,以机械压实作用为主,伴有早期绿泥石以薄膜状出现,少量方解石胶结物产出。早成岩B期,古地温为65~85 ℃,随着埋深的不断增加,强烈压实使颗粒呈点-线接触,部分亚溶作用为硅质胶结提供物质,石英加大为Ⅰ级加大,此时Ro为0.35%~0.5%,有机质半成熟,流体为弱酸性,长石开始发生溶蚀,孔隙类型为残余粒间孔和次生溶孔。中成岩A期,埋深进一步加大,古地温达到85~130 ℃,有机质处于大量生烃,使孔隙水呈酸性,溶蚀作用强,同时蒙脱石向伊利石快速转化,此时发育Ⅱ级石英加大,孔隙类型主要发育次生孔隙。
5. 储层主控因素
5.1 沉积作用对储层物性的影响
沉积作用对储层的影响主要体现在储层原始矿物组成及储层结构上,不同沉积环境中因水动力条件、搬运距离等的差异,使得沉积的砂岩成分、粒度、分选及磨圆条件存在差异[19-21]。陕北地区长7段主要为三角洲前缘水下分流河道及河口坝砂体,局部地区发育三角洲前缘滑塌形成的浊积岩[8-10]。研究区长7段物源主要受东北物源控制,仅东南局部受东南物源影响,三角洲前缘–滨浅湖沉积环境,水动力较弱,粒度一般为0.02~0.65 mm,分选磨圆较差,杂基含量相对较高。长7段砂岩主要为中砂岩、细砂岩和粉砂岩,其中中细长石砂岩、岩屑长石砂岩粒度相对较粗,分选较好,磨圆度为次棱–次圆,成分成熟度和结构成熟度较高,物性较好,粉砂粒长石砂岩、岩屑长石砂岩粒度较细,分选磨圆较差,杂基含量高,物性较差(图11)。
图 11. 长7段砂岩典型特征a. 陕365井,1893.7 m,灰色细砂岩,交错层理;b. 陕365井,1880.2 m,灰白色细砂岩,沙纹层理;c. 新271井,1991.8 m,灰白色细砂岩,爬升沙纹层理;d. 新283井,1993.8 m,灰白色细砂岩,板状交错层理; e. 新324井,1849.7 m,褐灰色细砂岩,交错层理;f. 新271井,1989.1 m,灰色细砂岩,平行层理;g. 新283井,1990.85 m,冲刷面;h. 午100井,1941.57 m,灰白色细砂岩,平行层理;i. 灰色细砂岩,块状层理,突变接触。Figure 11. Typical sedimentary characteristics of sandstone in Chang 7 Membera. Shan 365 well, 1893.7 m, gray fine sandstone, cross bedding; b. Shan 365 well, 1880.2 m, gray white fine sandstone, sand grain bedding; c. Xin 271 well, 1991.8 m, gray white fine sandstone, climbing sand Laminate bedding; d. Well Xin 283, 1993.8 m, gray-white fine sandstone, plate cross bedding; e. Well Xin 324, 1849.7 m, brown-gray fine sandstone, cross bedding; f. Well Xin 271, 1989.1 m, Gray fine sandstone, parallel bedding; g. Well Xin 283, 1990.85 m, scour surface; h. Wu 100 well, 1941.57 m, gray fine sandstone, parallel bedding; i. Gray fine sandstone, massive bedding, abrupt contact.5.2 成岩作用对储层的控制作用
成岩作用对储层发育的控制作用主要体现在两个方面:一是破坏性成岩作用,主要是压实作用、胶结作用;另一个是建设性成岩作用,主要是溶蚀作用。
(1)压实作用对储层物性的影响
根据Schrer [22]提出的砂岩初始孔隙度恢复方法,估算了研究区长7段初始孔隙度。研究区长7段砂岩分选系数平均为1.64,恢复初始孔隙度平均为35%。长7段砂岩虽然岩屑含量少,但泥质含量高,粒度较细,分选较好,压实作用对孔隙减少作用强。压实作用不仅是颗粒发生旋转排列,同时会引起塑性矿物变形,占据孔隙,堵塞喉道,进一步使储层物性变差。根据镜下观察与压实率计算,压实作用对原始孔隙的平均减孔量约为18%(图12)。
(2)胶结作用对储层物性的影响
研究区长7段主要发育黏土矿物胶结和碳酸盐胶结(图9a,9c)。黏土胶结矿物多填充孔隙和堵塞喉道,使储层更加致密。但是早期绿泥石薄膜对孔隙具有保护作用,一方面增加了岩石的抗压实能力,另一方面有效阻止了石英自生加大,对剩余原生粒间孔隙起到了一定程度的保护作用。压溶作用产生的硅质在孔隙内胶结,形成石英加大边,减少孔隙(图9d)。早期方解石胶结和中成岩A阶段溶蚀作用形成的物质重新胶结形成的铁方解石等进一步充填孔隙。研究区长7段早期碳酸盐胶结及晚期原始孔隙和溶蚀孔隙的充填,进一步降低了储层物性,对储层起到破坏作用。黏土矿物胶结与碳酸盐胶结使储层原生孔隙消失殆尽,整体上胶结作用是储层致密的重要原因,对储层起到破坏作用。
(3)溶蚀作用
研究区长7段致密砂岩现今孔隙主要为溶蚀作用形成的粒间溶蚀孔隙、粒内溶蚀孔。研究区长7段长石含量较高,随着地层的埋深,烃源岩逐渐成熟,大量排烃,成岩环境变为酸性,使长石和岩屑发生溶蚀,形成溶蚀孔隙,物性变好,是长7段储层发育最为主要的建设性成岩作用。
6. 结论
(1)鄂尔多斯盆地陕北地区长7段致密砂岩长石含量较高,砂岩以长石砂岩和岩屑长石砂岩为主,砂岩黏土矿物含量高,其中绿泥石含量最高,其次为伊利石、高岭石及伊蒙混层。
(2)长7段致密砂岩储层次生孔隙类型主要是粒间溶蚀孔隙、粒内溶蚀孔隙、填隙物晶间微孔隙及微裂缝。根据毛管压力曲线特征、孔喉分布特征将长7段致密砂岩储层孔喉结构划分为4类,其中Ⅰ类和Ⅱ类储层物性较好。
(3)长7段砂岩储层经历了压实作用、胶结作用(黏土矿物胶结、硅质胶结和碳酸盐胶结)和溶蚀作用等复杂的成岩改造,其中压实作用和胶结作用使储层孔隙减小,降低储层质量,溶蚀作用让储层质量得到改善,是长7段有利储层形成的主要原因。
-
[1] Robert W. Gems, Their Sources, Descriptions and Iden-tification[M].London:Butterworths, 1983.
[2] 严俊,刘晓波,王巨安,等.应用FTIR-XRD-XRF分析测试技术研究新型仿制绿松石的矿物学特征[J].岩矿测试,2015,34(5):544-549.
Yan J,Liu X B,Wang J A,et al.Determination of Mineral Compositions of New Imitated Turquoise by FTIR-XRD-XRF[J].Rock and Mineral Analysis,2015,34(5):544-549.
[3] Harlow G E,Sorensen S S.Jade (Nephrite and Jadeitite) and Serpentinite:Metasomatic Connections[J].International Geology Review,2005,47:113-146.
[4] Htipoglu M.Spectral,Electron Microscopical and Chem-ical Characteristics of the Gem-quality Silica-rich Rhodonite[J].Asian Journal of Chemistry,2012,24(2):733-741.
[5] 廖尚宜,李国武,彭明生.草莓红绿柱石(Pezzottaite)的晶体结构测定及其意义[J].矿物学报,2008,28(4):350-356.
Liao S Y,Li G W,Peng M S.Crystal Structure Analysis of Pezzottaite and Its Implication[J].Acta Mnieralogica Sinaica,2008,28(4):350-356.
[6] 任伟,汪立今,李甲平.电子探针和X射线衍射仪测定新疆祖母绿宝石[J].岩矿测试,2010,29(2):179-181.
Ren W,Wang L J,Li J P.Detection of Emerald from Xinjiang by Electron Probe Microanalyzer and X-ray Diffractameter[J].Rock and Mineral Analysis,2010,29(2):179-181.
[7] 孙访策,赵虹霞,干福熹.翡翠成分、结构和矿物组成的无损分析[J].光谱学与光谱分析,2011,31(11):3134-3139.
Sun F C,Zhao H X,Gan F X.Nondestructive Analysis of Chemical Composition,Structure and Mineral Constitution of Jadeite Jade[J].Spectroscopy and Spectral Analysis,2011,31(11):3134-3139.
[8] Kati M I,Turemis M,Keskin I C,et al.Luminescence Behavior of Beryl (Aquamarine Variety) from Turkey[J].Journal of Luminescence,2012,132:2599-2602.
[9] Anghelina F L,Bratu V,Rusanescu C O,et al.Mathematical Model of Horizontal Divergence Contribution to the Integrated Intensity of Single Crystal Diffraction in XRD Analysis of Materials[J].Computational Materials Science,2014,94:142-149.
[10] Fabisiak K,Piotrowska R T,Staryga E,et al.The Influence of Working Gas on CVD Diamond Quality[J].Materials Science and Engineering,2012,B177(15):1352-1357.
[11] Abdel-Rehim A M.Thermal and XRD Analysis of Synthesis of Fluoro-Topaz[J].Thermochimica Acta,2012,538:29-35.
[12] Noithong P,Pakkong P,Naemchanthara K.Color Change of Spodumene Gemstone by Electron Beam Irradiation[J].Advanced Materials Research,2013,770:370-373.
[13] Lambruschi E,Gatta G D,Adamo D,et al.Raman and Structural Comparison between the New Gemstone Pezzottaite Cs (Be2Li)Al2Si6O18 and Cs-beryl[J].Journal of Raman Spectroscope,2014,45:993-999.
[14] Widmer R,Malsy A K,Armbruster T.Effects of Heat Treatment on Red Gemstone Spinel:Single-crystal X-ray,Raman,and Photoluminescence Study[J].Physics and Chemistry of Minerals,2015,42(4):251-260.
[15] Gatta G D,Adamo I,Meven M,et al.A Single-crystal Neutron and X-ray Diffraction Study of Pezzottaite,Cs (Be2Li)Al2Si6O18[J].Physics and Chemistry of Minerals,2012,39:829-840.
[16] Venkateswara R R,Venkateswarulu P,Kasipathi C,et al. Trace Elemental Analysis of Indian Natural Moonstone Gems by PIXE and XRD Techniques[J].Applied Radiation and Isotopes,2013,82:211-222.
[17] 王永亚,干福熹.广西陆川蛇纹石玉的岩相结构及成矿机理[J].岩矿测试,2012,31(5):788-793.
Wang Y Y,Gan F X.Mineral Structure and Mineralization Mechanism of Serpentine Jade from Luchuan,Guangxi Province[J].Rock and Mineral Analysis,2012,31(5):788-793.
[18] Venkateswarulu P,Srinivasa R K,Kasipathi C,et al. Multielemental Analyses of Isomorphous Indian Garnet Gemstones by XRD and External PIXE Techniques[J].Applied Radiation and Isotopes,2012,70:2746-2754.
[19] 兰延,陆太进,陈伟明,等.基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量,岩矿测试,2015,34(2):207-212.
Lan Y,Lu T J,Chen W M,et al.A Non-destructive Measurement Method of Gem Jadeite Content in Jadeitite Based on Specific Gravity and X-ray Powder Diffraction[J].Rock and Mineral Analysis,2015,34(2):207-212.
[20] Olabanji S O,Ige O A,Mazzoli C,et al.Accelerator-based Analytical Technique in the Evaluation of Some Nigeria's Natural Minerals:Fluorite,Tourmaline and Topaz[J].Nuclear Instruments and Methods in Physics Research Section B,2005,240:350-355.
[21] 于吉顺,雷新荣,张锦化编著.矿物X射线粉晶鉴定手册[M].武汉:华中科技大学出版社,2011.
Yu J S,Lei X R,Zhang J H.X-ray Powder Identification Manual of Minerals[M].Wuhan:Huazhong University of Science and Technology Press,2011.
[22] 曹杰,李立平,王莎.翡翠仿制品——微晶玻璃的制备工艺初探[J].宝石和宝石学杂志,2008,11(1):46-49.
Cao J,Li L P,Wang S.Preliminary Study on Process of Producing Jadeite Jade's Imitation-Glass-Ceramic[J].Journal of Gems and Gemmology,2008,11(1):46-49.
[23] 周川杰,胡瑶,郝爽,等.四川"雅翠"的宝石学特征及命名探讨[J].宝石和宝石学杂志,2013,15(3):43-49.
Zhou C J,Hu Y,Hao S,et al.Gemmological Characteristics of ‘Yacui’ from Sichuan Province and Discussion of Nanjing[J].Journal of Gems and Gemmology,2013,15(3):43-49.
[24] 刘杰,李锐,谢敏,等.钙铝榴石玉仿翡翠的宝石学特征[J].宝石和宝石学杂志,2014,16(6):47-50.
Liu J,Li R,Xie M,et al.Gemmological Characteristics of Grossular Jade as Jadeite Imitation[J].Journal of Gems and Gemmology,2014,16(6):47-50.
[25] Hatipoglu M,Tuncer Y,Kibar R,et al.Thermal Properties of Gem-quality Moganite-rich Blue Chalcedony[J].Physica B,2010,405:4627-4633.
[26] Hatipoglu M,Basevirgen Y,Chamberlain S C.Gem-quality Turkish Purple Jade:Geological and Mineralogical Characteristics[J].Journal of African Earth Sciences,2012,63:48-61.
[27] 韩辰婧,王雅玫,刘洋.翡翠中共生矿物含量对翡翠定名的影响[J].宝石和宝石学杂志,2013,15(1):28-36.
Han C J,Wang Y M,Liu Y.Influence of Associated Minerals on Jadeite Naming[J].Journal of Gems and Gemmology,2013,15(1):28-36.
[28] 王铎,莫祖荣,李雪明,等.蓝色翡翠的呈色机制探讨[J].宝石和宝石学杂志,2013,15(2):14-17.
Wang Y,Mo Z R,Li X M,et al.Study on Colouring Mechanisms of Blue Jadeite[J].Journal of Gems and Gemmology,2013,15(2):14-17.
[29] 徐泽彬,徐志,邓常劼,等."永楚料"翡翠的宝石学研究[J].宝石和宝石学杂志,2014,16(6):43-46.
Xu Z B,Xu Z,Deng C J,et al.Gemmological Study on Jadeite Called ‘Yongchuliao’ in Jewelry Trade[J].Journal of Gems and Gemmology,2014,16(6):43-46.
[30] 王时麒,员雪梅,李世波.辽宁富铁蛇纹石玉的宝石学特征及开发利用[J].宝石和宝石学杂志,2007,9(4):1-6.
Wang S Q,Yuan X M,Li S B.Gemmological Characteristics and Developing Prospect of Fe-rich Serpentine Jade from Liaoning Province[J].Journal of Gems and Gemmology,2007,9(4):1-6.
[31] 戴慧,刘瑱,张青,等.大别山区石英质玉宝石矿物学特征研究[J].宝石和宝石学杂志,2011,13(3):32-37.
Dai H,Liu Z,Zhang Q,et al.Gemmological and Mineralogical Characteristics of Quartz Jade from Dabie Mountain[J].Journal of Gems and Gemmology,2011,13(3):32-37.
[32] 韩磊,洪汉烈.中国三地软玉的矿物组成和成矿地质背景研究[J].宝石和宝石学杂志,2009,11(3):6-10.
Han L,Hong H L.Study on Mineral Components and Geological Background of Nephrites from Three Localities in China[J].Journal of Gems and Gemmology,2009,11(3):6-10.
[33] 周征宇,廖宗廷,廖冠琳.中国两个主要产地软玉的矿物学特征对比[J].矿物学报,2010(增刊):35-36.
Zhou Z Y,Liao Z T,Liao G L.Comparison of Mineralogical Characteristics of Two Main Origin of Nephrite[J].Chinese Acta Mineralogica Sinica,2010(Supplement):35-36.
[34] 汤红云,钱伟吉,陆晓颖,等.青海软玉产出的地质特征及物质成分特征[J],宝石和宝石学杂志,2012,14(1):24-31.
Tang H Y,Qian W J,Lu X Y,et al.Geological and Composition Features of Nephrite from Qinghai Province[J].Journal of Gems and Gemmology,2012,14(1):24-31.
[35] 金晓婷,丘志力,戴苏兰,等.四川雅安绿色软玉的宝石矿物学特征[J].宝石和宝石学杂志,2014,16(5):1-8.
Jin X T,Qiu Z L,Dai S L,et al.Gemmological and Mineralogical Characteristics of Nephrite from Ya'an,Sichuan Province[J].Journal of Gems and Gemmology,2014,16(5):1-8.
[36] 侯弘,王轶,刘亚非.韩国软玉的宝石学特征研究[J].西北地质,2010,43(3):147-153.
Hou H,Wang Y,Liu Y F.Study of Gemological Characteristics of Korea Nephrite Jade[J].Northwestern Geology,2010,43(3):147-153.
[37] 廖冠琳,周征宇,廖宗廷.台湾碧玉的X射线粉末衍射和红外吸收光谱特征[J].宝石和宝石学杂志,2012,14(4):23-29.
Liao G L,Zhou Z Y,Liao Z T.XRD and IR Spectra Study on Green Nephrite from Taiwan[J].Journal of Gems and Gemmology,2012,14(4):23-29.
[38] 杨林.贵州罗甸玉矿物岩石学特征及成因机理研究[D].成都:成都理工大学,2013.
Yang L.Study on Petro-mineral Features and Genetic Mechanism of Luodian Jade,Guizhou Province[D].Chengdu:Chengdu University of Technology,2013.
[39] 陈呈,於晓晋,王时麒.河北唐河透闪石玉的宝石学特征及矿床成因[J].宝石和宝石学杂志,2014,16(3):1-11.
Chen C,Yu X J,Wang S Q.Study on Gemmological Characteristics and Ore Genesis of Nephrite from Tanghe,Hebei Province[J].Journal of Gems and Gemmology,2014,16(3):1-11.
[40] 赵茸珊编著.结晶学及矿物学[M].北京:高等教育出版社,2012.
Zhao R S.Crystallography and Mineralogy[M].Beijing:Higher Education Press,2012.
[41] Gatta G D,Nénert G,Guastella G,et al.A Single-crystal Neutron and X-ray Diffraction Study of a Li,Be-bearing Brittle Mica[J].Mineralogical Magazine,2014,78(1):55-72.
[42] Hatipoglu M.Spectral Electron Microscopical and Chemical Characteristics of the Gem-quality Silica-rich Rhodonite[J].Asian Journal of Chemistry,2012,24(2):733-741.
[43] Zbik M S,Raftery N A,Smart R,et al.Kaolinite Platelet Orientation for XRD and AFM Applications[J].Applied Clay Science,2010,50(3):299-304.
[44] Ehrich S N,Hanson J C,Camara A L,et al.Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment[J].National Synchrotron Radiation Instrumentation Conference,2011,649(1):213-215.
[45] 王轶,常娜,刘亚非,等.应用X射线衍射-激光拉曼光谱-电子探针等分析测试技术研究旬阳朱砂玉的矿物学特征[J].岩矿测试,2014,33(6):802-807.
Wang Y,Chang N,Liu Y F,et al.Study on the Mineralogical Characteristics of Cinnabar Jade by X-ray Power Diffraction-Laser Raman Spectroscopy-Electron Probe from Xunyang,Shanxi Province[J].Rock and Mineral Analysis,2014,33(6):802-807.
[46] 陈涛,严雪俊,鲁纬,等.昌化鸡血石的宝石学研究[J].宝石和宝石学杂志,2009,11(2):7-10.
Chen T,Yan X J,Lu W,et al.Gemmological Study on Chicken-blood Stone from Changhua[J].Journal of Gems and Gemmology,2009,11(2):7-10.
[47] 周丹怡,陈华,陆太进,等.基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系[J].岩矿测试,2015,34(6):652-658.
Zhou D Y,Chen H,Lu T J,et al.Study on the Relationship between the Relative Content of Moganite and the Crystallinity of Quartzite Jade by Raman Scattering Spectroscopy,Infrared Absorption Spectroscopy and X-ray Diffraction Techniques[J].Rock and Mineral Analysis,2015,34(6):652-658.
[48] Moxon T,Carpenter M A.Crystallite Growth Kinetics in Nanocrystalline Quartz (Agate and Chalcedony)[J].Mineralogical Magazine,2009,73(4):551-568.
[49] Ralph,Jolyon,Ida Ralph.Moganite:Moganite Mineral Information and Data[M].London:MinDat, 2007.
[50] Sen S K,Chakraborty K R.Magnesium-Iron Exchange Equilibrium in Garnet-biotite and Metamorphic Grade[J].Neues Jahrbuch fuer Mineralogie Abhandlungen,1968,108:181-207.
[51] 张蓓莉编著.系统宝石学(第二版)[M].北京:地质出版社,2006.
Zhang B L.Systematic Gemmology (The Second Edition)[M].Beijing:Geological Publishing House,2006.
[52] Groat L A,Giuliani G,Marshall D D,et al.Emerald Deposits and Occurrences:A Review[J].Ore Geology Reviews,2008,34:87-112.
[53] Viana R R,Evangelista H J, da Costa G M,et al.Characterization of Beryl (Aquamarine Variety) from Pegmatites of Minas Gerais,Brazil[J].Physics and Chemistry of Minerals,2002,29(10):668-679.
[54] Yakubovich O V,Pekov I V,Steele I M,et al.Alkali Metals in Beryl and Their Role in the Formation of Derivative Structural Motifs:Comparative Crystal Chemistry of Vorobyevite and Pezzottaite[J].Crystallography Reports,2009,54:399-412.
[55] Chanda S C,Manna A,Vijayan V,et al.PIXE & XRD Analysis of Nanocrystals of Fe,Ni and Fe2O3[J]. Materials Letters,2007,61:5059-5062.
[56] Hinckley D N.Variability in ‘Crystallinity’ Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina[J].Clays and Clay Minerals,1963,11:229-235.
[57] 王妍.巴林石透明度的影响因素及颜色成因探讨[D].北京:中国地质大学(北京),2012.
Wang Y.Study on the Influencing Factors of Transparence and Color Gensis of Balin Stone[D].Beijing:China University of Geosciences (Beijing),2012.
[58] Arasuna A,Okuno M,Okudera H,et al.Structural Changes of Synthetic Opal by Heat Treatment[J].Physics and Chemistry of Minerals,2012,40(9):747-755.
[59] 陈全莉,周冠敏,尹作为.珊瑚化石的红外光谱及XRD研究[J].光谱学与光谱分析,2012,32(8):2246-2249.
Chen Q L,Zhou G M,Yin Z W.Infrared Spectroscopy and XRD Studies of Coral Fossils[J].Spectroscopy and Spectral Analysis,2012,32(8):2246-2249.
[60] Rahman M A,Oomori T.Structure,Crystallization and Mineral Composition of Sclerites in the Alcyonarian Coral[J].Journal of Crystal Growth,2008,310(15):3528-3534.
[61] 谢先德,张刚生.珍珠层中文石晶体择优取向的XRD极图分析[J].矿物学报,2001,21(3):299-302.
Xie X D,Zhang G S.XRD Pole Figure Analysis of the Preferential Orientations of Aragonite in Nacre[J].Acta Mineralogica Sinica,2001,21(3):299-302.
[62] Ma Y F,Gao Y H,Feng Q L.Characterization of Organic Matrix Extracted from Fresh Water Pearls[J].Materials Science and Engineering C,2011,31(7):1338-1342.
[63] Inoue M,Yokoyama Y,Harada M,et al.Trace Element Variations in Fossil Corals from Tahiti Collected by IODP Expedition 310:Reconstruction of Marine Environments during the Last Deglaciation (15 to 9ka)[J].Marine Geology,2010,271(15):303-306.
[64] Gothmann A N,Stolarskib J,Adkinsc J F,et al.Fossil Corals as an Archive of Secular Variations in Seawater Chemistry Since the Mesozoic[J].Geochimica et Cosmochimica Acta,2015,160(1):188-208.
[65] Suzuki M,Kim H,Mukai H,et al.Quantitative XRD Analysis of {110} Twin Density in Biotic Aragonites[J].Journal of Structural Biology,2012,180(3):458-468.
[66] Pandey M,Cunha R D,Tyagi A K.Defects in CVD Diamond:Raman and XRD Studies[J].Journal of Alloys and Compounds,2002,333(1-2):260-265.
[67] Heiman A,Lakin E,Zolotoyabko E,et al.Microstructure and Stress in Nano-crystalline Diamond Films Deposited by DC Glow Discharge CVD[J].Diamond and Related Materials,2002,11(3-6):601-607.
[68] Fishers D.Brown Diamond and High Pressure High Tem-perature Treatment[J].Lithos,2009,112(12):619-624.
[69] Phillips W R,Griffen D T.Optical Mineralogy,the Nono-paque Minerals[J].Geojournal,1981(6):595-596.
[70] 陆太进.钻石鉴定和研究的进展[J].宝石和宝石学杂志,2010,12(4):1-6.
Lu T J.Development on Identification and Research of Diamond[J].Journal of Gems and Gemmology,2010,12(4):1-6.
-