中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

熔融制样X射线荧光光谱法测定岩盐中的主量成分

李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012
引用本文: 李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012
Determination of Major Components in Rock Salt by X-ray Fluorescence Spectrometry with Sample Fusion[J]. Rock and Mineral Analysis, 2016, 35(3): 290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012
Citation: Determination of Major Components in Rock Salt by X-ray Fluorescence Spectrometry with Sample Fusion[J]. Rock and Mineral Analysis, 2016, 35(3): 290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012

熔融制样X射线荧光光谱法测定岩盐中的主量成分

  • 基金项目:
    国土资源部公益性行业科研专项(201211056)
详细信息
  • 中图分类号: O657.34

Determination of Major Components in Rock Salt by X-ray Fluorescence Spectrometry with Sample Fusion

  • 以XRF分析岩盐,需解决标准物质缺乏和Cl在分析过程中的损失问题,选择合适的前处理方法以保证结果重现性。经实验发现用于粉末压片法的人工标准物质中氯化钠、硫酸钙等组分经X射线照射后呈现向样片表面扩散的趋势,其中氯化钠进一步分解,难以建立稳定的工作曲线;熔融制样则不存在这一问题,具备定量基础。本文选择熔融制样作为前处理方法,将光谱纯盐类、氧化物与土壤、水系沉积物国家标准物质以不同比例混合,配制人工标准物质建立工作曲线。熔融制样条件为:取样量0.6000 g,四硼酸锂+偏硼酸锂(12:22)混合熔剂10.000 g,熔融温度1000℃,预熔时间300 s,熔样时间300 s,静置时间30 s,所得样片平整通透,因样品中所含Cl具有脱模效果无需补充脱模剂。本方法测定主量元素的精密度(RSD)均小于1.5%,与经典方法相比减少了分析时间与试剂消耗,可作为岩盐主量成分分析的备选方法。
  • 加载中
  • 图 1  Na、Cl荧光强度随分析次数变化趋势

    Figure 1. 

    表 1  XRF仪器测量条件

    Table 1.  Measurement parameters of XRF instrument

    通道谱线晶体准直器(μm)探测器管电压(kV)管电流(mA)2θ(°)背景(°)PHD
    LLUL
    NaPX1700Flow2514427.75 25.9629.56 2075
    MgPX1700Flow3012022.96 20.8825.092575
    CaLiF200300Flow4090113.13 115.30-3070
    KLiF200300Flow4090136.71 140.41-3070
    SGe111300Flow25144110.68 108.16-3070
    ClGe111300Flow2514492.83 91.04-3070
    SiPE002300Flow30120109.10 111.02-2075
    AlPE002300Flow30120144.92 143.55-2278
    FeLiF200300HiperScint409057.5158.38-1578
    注: Na、Mg设置两点背景,其余元素设置单点背景。
    下载: 导出CSV

    表 2  人工标准物质元素含量范围

    Table 2.  Concentration ranges of components in synthetic calibration materials

    组分含量(%)组分含量(%)
    Na6.599~20.130Cl10.110~30.330
    Mg0.125~6.620SiO29.950~27.630
    K0.786~15.300Al2O31.823~3.687
    Ca1.191~17.796Fe2O30.487~1.463
    SO49.188~35.119
    下载: 导出CSV

    表 3  本方法与岩盐经典分析方法的比较

    Table 3.  Comparison of analytical results of salt rock samples obtained by this method and traditonal methods

    实际样品编号Na含量(%)Mg含量(%)K含量(%)Ca含量(%)Cl含量(%)SO4含量(%)
    XRFFAASXRFFAASXRFFAASXRFEDTA容量法XRF硝酸银容量法XRF重量法
    133.2331.220.120.0660.010.0324.644.5250.8848.8510.529.77
    237.841.860.060.0180.070.0851.291.3057.5555.113.132.62
    327.1726.850.390.260.040.0338.898.8141.740.3419.1519.12
    428.5328.920.290.200.060.047.487.6943.242.2517.2217.53
    538.8638.000.050.010.020.0380.370.3759.3857.630.860.94
    下载: 导出CSV
  • [1]

    岩石矿物分析编委会.岩石矿物分析(第四版 第二分册)[M].北京:地质出版社,2011:447-449.

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Vol.Ⅱ) [M].Beijing:Geological Publishing House,2011:447-449.

    [2]

    宋江涛,赵庆令.粉末压片制样-波长色散X射线荧光光谱法测定卤水中的溴[J].岩矿测试,2011,30(4):494-496.

    Song J T,Zhao Q L.Determination of Bromine in Brine Samples by Wavelength Dispersive X-ray Fluorescence Spectrometry with Pressed Powder Preparation[J].Rock and Mineral Analysis,2011,30(4):494-496.

    [3]

    陈景伟,宋江涛,赵庆令,等.薄膜吸附制样-波长色散X射线荧光光谱法测定卤水中的溴[J].岩矿测试,2015,34(5):570-574.

    Chen J W,Song J T,Zhao Q L,et al.Determination of Bromine in Brine by Wavelength Dispersive X-ray Fluorescence Spectrometry with Film Adsorption Pretreatment[J].Rock and Mineral Analysis,2015,34(5):570-574.

    [4]

    Alexander P.X-ray Induced Alteration of Specimens as Crucial Obstacle in XRF Spectrometry of Fluorine in Rocks and Soils[J].X-ray Spectrometry,2013,42(1):19-32.

    [5]

    陆晓明,吉昂,陶光仪.X射线荧光光谱法测定萤石中的氟、钙及二氧化硅[J].分析化学,1997,25(2):178-180.

    Lu X M,Ji A,Tao G Y.Determination of Fluorine,Calcium and Silicon Dioxide in Fluorite by X-ray Fluorescence Spectrometry[J].Chinese Journal of Analytical Chemistry,1997,25(2):178-180.

    [6]

    李可及,肖颖.熔融制样-X射线荧光光谱法测定氟碳铈矿流程样品[J].稀土,2016,37(2):144-148.

    Li K J,Xiao Y.Determination of Bastnaesite Process Samples by Fusion X-ray Fluorescence Spectrometry [J].Chinese Rare Earths,2016,37(2):144-148.

    [7]

    Wiedenbeck M,BédardL P,Bugoi R,et al.GGR Biennial Critical Review:Analytical Developments Since 2012[J].Geostandards and Geoanalytical Research,2014,38(4):467-512.

    [8]

    West M,Ellis A T,Potts P J,et al.2014 Atomic Spectrometry Update-A Review of Advances in X-ray Fluorescence Spectrometry[J].Journal of Analytical Atomic Spectrometry,2014,29:1516-1563.

    [9]

    Classie F,Blanchette J S编著.卓尚军译.硼酸盐熔融的物理和化学[M].上海:华东理工大学出版社,2006:52-61.

    Classie F,Blanchette J S (Editor).Zhuo S J (Translator). Physics and Chemistry of Borate Fusion [M].Shanghai:East China University of Science and Technology Press,2006:52-61.

    [10]

    Nakayama K,Nakamura T.Undersized (12.5mm Diame-ter) Glass Beads with MinimalAmount (11mg) of Geochemical and Archeological Silicic Samples for X-ray Fluorescence Determination of Major Oxides[J].X-Ray Spectrometry,2012,41(4):225-234.

    [11]

    Ichikawa S,Onuma H,Nakamura T.Development of Undersized (12.5mm Diameter) Low-dilution Glass Beads for X-ray Fluorescence Determination of 34 Components in 200mg of Igneous Rock for Applications with Geochemical and Archeological Silicic Samples[J].X-Ray Spectrometry,2016,45(4):34-47.

  • 加载中

(1)

(3)

计量
  • 文章访问数:  784
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2015-02-06
修回日期:  2016-05-04
录用日期:  2016-05-20

目录