Determination of Trace Elements in Thermomineral Waters of a High Altitude Area by Inductively Coupled Plasma-Mass Spectrometry
-
摘要: 西藏地区地热水矿化度较高,且西藏地区海拔高分压低,造成电感耦合等离子体质谱/发射光谱仪(ICP-MS/OES)的工作条件与低海拔地区不同,因此测定样品时无法采用与低海拔地区相同的测定方法。本文通过优化仪器的工作条件、加入内标元素和建立干扰校正方程等方法,消除了低分压和高矿化度的影响,建立了ICP-MS同时测定高海拔地区地热水中的12种微量元素的方法,并对地热水中的放射性元素铀进行检测。测定元素校准曲线的相关系数都在0.9995以上,方法检出限为0.012~0.128 μg/L,相对标准偏差(RSD)为1.2%~6.8%,样品加标回收率为95.7%~106.5%。结合本课题组前期的研究成果,本文提出,ICP-MS法更适合较高矿化度地热水中微量和痕量元素的测定,ICP-OES法则适用于主量元素的测定,两种方法的结合,可建立高海拔地区地热水的分析技术体系。
-
关键词:
- 电感耦合等离子体质谱法 /
- 高海拔地区 /
- 地热水 /
- 高矿化度 /
- 微量元素
Abstract: The mineralization extent of thermomineral water in Tibet is relatively high, together with high altitude and low air pressure, resulting in the differences in the working conditions of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) between Tibet and low altitude areas. Therefore, the measuring method in low altitude areas cannot be used in Tibet. By optimizing the working conditions of the instrument, adding internal standard, and establishing an interference correction equation, the influences of low pressure and hyper-salinity are eliminated. Simultaneous determination of 12 trace elements in thermomineral water by ICP-MS was developed in this study. At the same time, the radioactive element uranium in thermomineral water was also detected. Correlative factors of the calibration curve were all above 0.9995. The detection limits of this method were 0.012-0.128 μg/L, the relative standard deviations were 1.2%-6.8%, and the recoveries of spiked samples were 95.7%-106.5%. Combining with previous findings of this program, ICP-MS is more suitable for measuring trace elements in thermomineral water of hyper-salinity, while ICP-OES is suitable for the determination of major elements. The combination of these two methods can form a system of analytical techniques of thermomineral water in high altitude areas. -
表 1 内控样和稀释样品测定结果
Table 1. Analytical results of internal control and diluted samples
分析项目 元素测定值(μg/L) Li Cu Zn As Rb Sr Mo Cd Ba Cs Pb U 内控样测定值 103.0 106.4 97.6 102.5 102.1 104.6 97.2 102.0 99.6 103.8 106.4 98.0 原样测定值 1968 3.68 7.85 1977 284 1907 0.502 0.294 75.6 1985 0.364 0.172 稀释2倍后 988 1.78 3.97 990 144 961 0.257 0.151 38.3 996 0.188 0.088 稀释5倍后 396 0.74 1.61 391 58 386 0.104 0.060 15.4 399 0.074 0.035 表 2 方法检出限及检测范围
Table 2. Detection limit and measured range of the method
测定元素 标准系列浓度
(μg/L)相关系数 检出限
(μg/L)检测范围
(μg/L)Li 0, 10, 100, 1000, 5000 0.999 0.127 0.381~5000 Cu 0, 0.1, 1, 10, 100 0.999 0.065 0.195~100 Zn 0, 0.1, 1, 10, 100 0.997 0.041 0.123~100 As 0, 10, 100, 1000, 5000 0.999 0.128 0.384~5000 Rb 0, 10, 100, 1000 0.998 0. 075 0.225~1000 Sr 0, 10, 100, 1000, 5000 0.998 0. 067 0.201~5000 Mo 0, 0.1, 1, 10 0.999 0.049 0.147~10 Cd 0, 0.1, 1, 10 0.997 0.059 0.177~10 Ba 0, 10, 100, 1000 0.999 0.091 0.273~1000 Cs 0, 10, 100, 1000, 5000 0.999 0.051 0.153~5000 Pb 0, 0.1, 1, 10 0.995 0.073 0.219~10 U 0, 0.1, 1, 10 0.995 0.012 0.036~10 表 3 方法加标回收率和精密度试验
Table 3. Recovery and precision tests of the method
元素 回收率试验 精密度试验 加标前量
(μg/L)加标量
(μg/L)加标后量
(μg/L)回收率
(%)测定高值
(μg/L)测定低值
(μg/L)平均值
(μg/L)RSD
(%)Li 1968 2000 3981 100.6 1985 1957 1965 4.6 Cu 3.68 5 8.53 97.0 3.98 3.51 3.71 4.1 Zn 7.85 10 18.14 102.9 8.33 7.42 7.76 1.4 As 1977 2000 3957 99.0 1984 1956 1970 6.8 Rb 284 200 477 96.5 294 266 285 6.2 Sr 1907 2000 3931 101.2 1921 1857 1893 5.5 Mo 0.502 1 1.567 106.5 0.522 0.447 0.491 5.6 Cd 0.294 0.5 0.802 101.6 0.304 0.274 0.288 4.8 Ba 75.60 100 171.32 95.7 81.2 70.5 77.6 5.2 Cs 1985 2000 4003 100.9 2004 1941 1994 6.1 Pb 0.364 0.5 0.848 96.8 0.188 0.149 0.167 4.0 U 0.172 0.2 0.383 105.5 0.392 0.307 0.331 1.2 表 4 ICP-MS与ICP-OES和传统方法测定结果比较
Table 4. A comparison of analytical results with ICP-MS, ICP-OES and traditional methods
测定方法 元素含量(μg/L) Li Cu Zn As Rb Sr Mo Cd Ba Cs Pb U 本方法 1968 3.68 7.85 1977 284 1907 0.502 0.294 75.6 1985 0.364 0.172 ICP-OES法 2021 未检出 未检出 1982 263 1992 未检出 未检出 77 1962 未检出 未检出 传统方法 1933 3.72 7.67 1943 277 1876 0.488 0.307 80.3 1931 0.338 未检出 -
[1] Wynna J G, Sumralla J B, Onac B P.Sulfur Isotopic Composition and the Source of Dissolved Sulfur Species in Thermo-mineral Springs of the Cerna Valley, Romania[J].Chemical Geology, 2009, 271(1-2):31-43. https://www.researchgate.net/profile/Jonathan_Wynn/publication/222888432_Sulfur_isotopic_composition_and_the_source_of_dissolved_sulfur_species_in_thermo-mineral_springs_of_the_Cerna_Valley_Romania/links/57236ced08aee491cb3771da.pdf?origin=publication_list
[2] Nikic Z, Vidovic M.Hydrogeological Conditions and Quality of Ground Waters in Northern Banat, Pannonian Basin[J].Environmental Geology, 2007, 52(6):1075-1084. doi: 10.1007/s00254-006-0547-z
[3] 李凤贞, 黄志广, 李仕培, 等.石墨炉原子吸收测定水中铝的方法研究[J].中国卫生检验杂志, 2006, 16(9):1062-1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ200609014.htm
Li F Z, Huang Z G, Li S P, et al.Determination of Aluminum in Water by Graphite Furnace Atomic Absorption[J].Chinese Journal of Health Laboratory Technology, 2006, 16(9):1062-1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ200609014.htm
[4] 陈景伟, 宋江涛, 赵庆令, 等.薄膜吸附制样-波长色散X射线荧光光谱法测定卤水中的溴[J].岩矿测试, 2015, 34(5):570-574. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150512&flag=1
Chen J W, Song J T, Zhao Q L, et al.Determination of Bromine in Brine by Wavelength Dispersive X-ray Fluorescence Spectrometry with Film Adsorption Pretreatment[J].Rock and Mineral Analysis, 2015, 34(5):570-574. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150512&flag=1
[5] Pantic T P, Birkeb M, Petrovic B, et al.Hydrogeo-chemistry of Thermal Groundwaters in the Serbian Crystalline Core Region[J].Journal of Geochemical Exploration, 2015, 159:101-114. doi: 10.1016/j.gexplo.2015.08.009
[6] Apollaro C, Dotsika E, Marini L, et al.Chemical and Isotopic Characterization of the Thermomineral Water of Terme Sibarite Springs (Northern Calabria, Italy)[J].Geochemical Journal, 2012, 46(2):117-129. doi: 10.2343/geochemj.1.0166
[7] 王玉功, 拉毛吉, 毛振才.电感耦合等离子体-发射光谱法(ICPAES)快速测定饮用水中8种微量元素[J].分析测试技术与仪器, 2008, 14(3):161-163. http://mall.cnki.net/magazine/article/fxcq200803009.htm
Wang Y G, La M J, Mao Z C.Rapid Determination of 8 Kinds of Trace Elements in Drinking Water by Inductively Coupled Plasma-Atomic Emission Spectrometry[J].Analysis and Testing Technology and Instruments, 2008, 14(3):161-163. http://mall.cnki.net/magazine/article/fxcq200803009.htm
[8] 王祝, 李明礼, 邵蓓, 等.电感耦合等离子体发射光谱法测定西藏日多温泉地热水中11种主次量元素[J].岩矿测试, 2015, 34(3):302-307. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150307&flag=1
Wang Z, Li M L, Shao B, et al.Determination of 11 Major and Minor Elements in Geothermal Water of the Riduo Hotsprings from Tibet by Inductively Coupled Plasma-Optical Emission Spectrometry[J].Rock and Mineral Analysis, 2015, 34(3):302-307. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150307&flag=1
[9] 张保科, 王蕾, 马生凤.电感耦合等离子体质谱法测定含气天然矿泉水中的铬[J].岩矿测试, 2013, 32(4):568-571. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20130409&flag=1
Zhang B K, Wang L, Ma S F.Quantification of Cr in Natural Sparkling Mineral Waters by Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis, 2013, 32(4):568-571. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20130409&flag=1
[10] 王俊平, 马晓星, 方国臻, 等.电感耦合等离子体质谱法测定饮用水中6种痕量重金属元素[J].光谱学与光谱分析, 2010, 30(10):2827-2829. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201010055.htm
Wang J P, Ma X X, Fang G Z, et al.Determination of Six Heavy Metals Elements in Drinking Water by Inductively Coupled Plasma Mass Spectrometry[J].Spectroscopy and Spectral Analysis, 2010, 30(10):2827-2829. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201010055.htm
[11] 王庚, 彭婧, 史红星, 等.电感耦合等离子体质谱同时测定沉积物中12种重金属元素[J].环境化学, 2011, 30(11):1945-1948. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201111019.htm
Wang G, Peng J, Shi H X, et al.Simultaneous Determination of Twelve Heavy Metals in Sediment by ICP-MS[J].Environmental Chemistry, 2011, 30(11):1945-1948. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201111019.htm
[12] 田原, 余成群, 雒昆利, 等.西藏地区天然水的水化学性质和元素特征[J].地理学报, 2014, 69(7):969-982. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201407010.htm
Tian Y, Yu C Q, Luo K L, et al.Water Chemical Properties and The Element Characteristics of Natural Water in Tibet, China[J].Acta Geographica Sinica, 2014, 69(7):969-982. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201407010.htm
[13] 李明礼, 多吉, 王祝, 等.西藏日多温泉水化学特征及其物质来源[J].中国岩溶, 2015, 34(3):209-216. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503002.htm
Li M L, Duo J, Wang Z, et al.Hydrochemical Characteristics and Material Sources of the Riduo Thermal Spring in Tibet[J].Carsologica Sinica, 2015, 34(3):209-216. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503002.htm