中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成

孟郁苗, 黄小文, 高剑峰, 戴智慧, 漆亮. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004
引用本文: 孟郁苗, 黄小文, 高剑峰, 戴智慧, 漆亮. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004
Yu-miao MENG, Xiao-wen HUANG, Jian-feng GAO, Zhi-hui DAI, Liang QI. Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004
Citation: Yu-miao MENG, Xiao-wen HUANG, Jian-feng GAO, Zhi-hui DAI, Liang QI. Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004

无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成

详细信息
    作者简介: 孟郁苗,助理研究员,从事非传统稳定同位素地球化学及低温矿床成因研究。E-mail:mengyumiao@vip.gyig.ac.cn
    通讯作者: 黄小文,助理研究员,从事矿物微区分析、Re-Os同位素及铁矿床成因研究。E-mail:huangxiaowen@vip.gyig.ac.cn
  • 中图分类号: O657.63;P578.46

Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration

More Information
  • 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)常用于磁铁矿原位微量元素分析,按照校正策略不同,主要分为内标法和无内标法。内标法需要用电子探针(EMPA)预先测定磁铁矿中内标元素Fe的含量,过程较繁琐,且待测元素含量会受到内标元素含量测定的影响。本文采用铁含量较高的玄武质玻璃BCR-2G、BIR-1G、BHVO-2G和GSE-1G作为外标,避免了内标元素含量的测定,建立了无内标-多外标校正LA-ICP-MS测定磁铁矿微量元素组成的分析方法。利用该方法测定了科马提岩玻璃GOR-128g和自然岩浆磁铁矿BC 28的微量元素组成以评估方法的可靠性。结果表明,科马提岩玻璃的测定结果与推荐值及前人内标法的测定值一致,多数元素的相对标准偏差RSD<5%;自然岩浆磁铁矿的测定结果与推荐值相比,多数元素的RSD<7%,低于前人内标法的RSD(<15%)。由此说明无内标-多外标法可以实现富铁硅酸岩或磁铁矿微量元素含量的准确校正,克服了基体效应的影响。因此,无内标-多外标法是一种原位测定磁铁矿微量元素含量的快速、准确方法,具有一定的应用潜力。
  • 加载中
  • 图 1  监控样测定值与推荐值及内标法测定值相关图

    Figure 1. 

    图 2  自然岩浆磁铁矿BC 28的LA-ICP-MS分析时间分辨信号谱图

    Figure 2. 

    图 3  自然磁铁矿LA-ICP-MS微量元素分析结果与EMPA分析结果对比图

    Figure 3. 

    表 1  磁铁矿微量元素原位分析标样类型及相关元素含量

    Table 1.  Types and element contents of Standard Reference Materials for in situ trace element analyses of magnetite

    标样名称标样类型Fe含量(%)其他元素含量 (μg/g)研制机构
    NIST 610合成硅酸盐玻璃0.04625~488 美国国家标准与 技术研究院 (NIST)
    NIST 361铁合金95.60.3~20000
    NIST 2782工业残渣26.90.06~20300
    GSE-1G合成玄武岩玻璃9.881.17~250600 美国地质调查局 (USGS)
    BCR-2G玄武岩玻璃9.660.5~252460
    BHVO-2G玄武岩玻璃8.630.3~232866
    BIR-1G玄武岩玻璃7.910.3~223813
    GOR-2G科马提岩玻璃7.60.01~215133
    MASS-1硫化物压饼15.60.03~276000
    注:表中标样元素含量参考GeoReM数据库,具体见网站地址http://georem.mpch-mainz.gwdg.de/sample_query.asp
    下载: 导出CSV

    表 2  LA-ICP-MS微量元素分析仪器参数

    Table 2.  Equipment parameters for LA-ICP-MS trace elemenetal analyses

    ICP-MS工作参数设定值激光工作参数设定值
    射频功率1550 W波长193 nm
    等离子体气(Ar)流量15 L/min能量密度8.5 J/cm2
    辅助气(Ar)流量1.02 L/min载气He
    检测器Dual(脉冲和模拟计数)剥蚀方式点剥蚀
    扫描模式跳峰剥蚀束斑大小32 μm
    单位质量扫描时间6 ms剥蚀频率6 Hz
    获取模式时间分辨率分析脉冲数300
    下载: 导出CSV

    表 3  监控样科马提质玻璃GOR-128g和自然岩浆磁铁矿BC 28微量元素分析结果

    Table 3.  Element concentrations of monitoring samples,komatitic glass GOR-128g and natural magmatic magnetite BC 28

    元素检测限 (μg/g)GOR-128gBC 28
    测定值(μg/g)推荐值(μg/g)报道值(μg/g)测定值(μg/g) 推荐值 (μg/g)报道值(μg/g)
    平均值标准偏差平均值标准偏差平均值标准偏差平均值标准偏差平均值标准偏差
    Mg1.76 147258817015682618101501432360811933 1688 1086095801463
    Al3.59 5186615245244690049664422122043 2322 19440201163432
    Sc0.78 31.41.432.11.131.62.728 2 28.723.52.1
    Ti2.09 157890172772152114787557 3358 82020744595765
    V0.27 1855189131751310217 594 90598822623
    Cr4.76 219478227217118522491429 83 10961150100
    Mn2.16 1471511361701332612409 297 19881824118
    Co0.19 94.82.592.46.291.115.3316 39 22528024
    Ni2.53 116853107461952156641 74 53656544
    Cu2.52 66.83.163.812.568924 22 315236
    Zn1.37 72.93.374.76.711226548 81 500569134
    Ga0.39 9.30.68.671.076.580.3655 9 -393
    Ge0.97 1.20.40.96-0.890.24-----
    Y0.01 11.20.611.80.512.71.3-----
    Zr0.23 9.50.9100.511.61.922 4 26.11.8
    Nb0.03 0.0800.0240.0990.0070.1010.0281.55 0.10 1.470.17
    Mo0.10 0.6060.1400.710.260.670.31-----
    Hf<0.0010.3270.0650.350.020.380.06-----
    Ta0.003 0.0150.0050.0190.0010.0240.009-----
    W0.006 15.70.615.52.4152-----
    Sn-------1.73 0.58 2.290.78
    注:检测限为32 μm束斑时的检测限;测定值的平均值为50个样品的平均值;GOR-128g和BC 28的推荐值及报道值均引自Dare等[11];表中“-”代表缺失值。
    下载: 导出CSV
  • [1]

    Jackson S E,Longerich H P,Dunning G R,et al.The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ Trace-element Determinations in Minerals[J].Canadian Mineralogist,1992,30:1049-1064.

    [2]

    Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].The Canadian Mineralogist,1995,33:303-312.

    [3]

    Russo R E,Mao X L,Liu H C,et al.Laser Ablation in Analytical Chemistry-A Review[J].Talanta,2002,57(3):425-451. doi: 10.1016/S0039-9140(02)00053-X

    [4]

    Mokgalaka N S,Gardea-Torresdey J L.Laser Ablation Inductively Coupled Plasma Mass Spectrometry:Principles and Applications[J].Applied Spectroscopy Reviews,2006,41(2):131-150. doi: 10.1080/05704920500510703

    [5]

    Cook N,Ciobanu C L,George L,et al.Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry:Approaches and Opportunities[J].Minerals,2016,6(111):1-34.

    [6]

    Norman M,Robinson P,Clark D.Major- and Trace-element Analysis of Sulfide Ores by Laser-Ablation ICP-MS,Solution ICP-MS,and XRF:New Data on International Reference Materials[J].The Canadian Mineralogist,2003,41(2):293-305. doi: 10.2113/gscanmin.41.2.293

    [7]

    Müller A,Wiedenbeck M,van Den Kerkhof A M,et al.Trace Elements in Quartz-A Combined Electron Microprobe,Secondary Ion Mass Spectrometry,Laser-Ablation ICP-MS,and Cathodoluminescence Study[J].European Journal of Mineralogy,2003,15(4):747-763. doi: 10.1127/0935-1221/2003/0015-0747

    [8]

    Danyushevsky L,Robinson P,Gilbert S,et al.Routine Quantitative Multi-element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects[J].Geochemistry:Exploration,Environment,Analysis,2011,11:51-60. doi: 10.1144/1467-7873/09-244

    [9]

    Ding L,Yang G,Xia F,et al.A LA-ICP-MS Sulphide Calibration Standard Based on a Chalcogenide Glass[J].Mineralogical Magazine,2011,75(2):279-287. doi: 10.1180/minmag.2011.075.2.279

    [10]

    吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1

    Wu S T,Wang Y P,Xu C X.Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1

    [11]

    Dare S A S,Barnes S J,Beaudoin G.Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid,Sudbury,Canada:Implications for Provenance Discrimination[J].Geochimica et Cosmochimica Acta,2012,88:27-50. doi: 10.1016/j.gca.2012.04.032

    [12]

    Gao J F,Zhou M F,Lightfoot P C,et al.Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit,Xinjiang,Northwestern China[J].Economic Geology,2013,108:1833-1848. doi: 10.2113/econgeo.108.8.1833

    [13]

    Nadoll P,Angerer T,Mauk J L,et al.The Chemistry of Hydrothermal Magnetite:A Review[J].Ore Geology Reviews,2014,61:1-32. doi: 10.1016/j.oregeorev.2013.12.013

    [14]

    Liu P P,Zhou M F,Chen W T,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province,SW China[J].Ore Geology Reviews,2015,65:853-871. doi: 10.1016/j.oregeorev.2014.09.002

    [15]

    Huang X W,Zhou M F,Qi L,et al.Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-hydrothermal Fe Deposit,NW China[J].Mineralium Deposita,2013,48(8):925-946. doi: 10.1007/s00126-013-0467-2

    [16]

    Huang X W,Gao J F,Qi L,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite and Re-Os Dating of Pyrite:The Tianhu Hydrothermally Remobilized Sedimentary Fe Deposit,NW China[J].Ore Geology Reviews,2015,65:900-916. doi: 10.1016/j.oregeorev.2014.07.020

    [17]

    Huang X W,Zhou M F,Qiu Y Z,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Bayan Obo Fe-REE-Nb Deposit,North China[J].Ore Geology Reviews,2015,65:884-899. doi: 10.1016/j.oregeorev.2014.09.010

    [18]

    Chen W T,Zhou M F,Gao J F,et al.Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province,SW China[J].Mineralium Deposita,2015,50(7):795-809. doi: 10.1007/s00126-014-0575-7

    [19]

    Nadoll P,Mauk J L,Leveille R A,et al.Geochemistry of Magnetite from Porphyry Cu and Skarn Deposits in the Southwestern United States[J].Mineralium Deposita,2015,50(4):493-515. doi: 10.1007/s00126-014-0539-y

    [20]

    Dupuis C,Beaudoin G.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types[J].Mineralium Deposita,2011,46(3):1-17.

    [21]

    Dare S A S,Barnes S J,Beaudoin G,et al.Trace Elements in Magnetite as Petrogenetic Indicators[J].Mineralium Deposita,2014,49(7):785-796. doi: 10.1007/s00126-014-0529-0

    [22]

    Huang X,Qi L,Meng Y.Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region,Eastern Tianshan Orogenic Belt,NW China[J].Acta Geologica Sinica (English Edition),2014,88(1):176-195. doi: 10.1111/acgs.2014.88.issue-1

    [23]

    Boutroy E,Dare S A S,Beaudoin G,et al.Magnetite Composition in Ni-Cu-PGE Deposits Worldwide and Its Application to Mineral Exploration[J].Journal of Geochemical Exploration,2014,145:64-81. doi: 10.1016/j.gexplo.2014.05.010

    [24]

    Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al.Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes:Application to Mineral Exploration[J].Ore Geology Reviews,2016,78:388-408. doi: 10.1016/j.oregeorev.2016.04.014

    [25]

    Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al. Principal Component Analysis of Magnetite Composition from Volcanogenic Massive Sulfide Deposits:Case Studies from the Izok Lake (Nunavut,Canada) and Halfmile Lake (New Brunswick,Canada) Deposits[J].Ore Geology Reviews,2016,72:60-85. doi: 10.1016/j.oregeorev.2015.06.023

    [26]

    Nadoll P,Koenig A E.LA-ICP-MS of Magnetite:Methods and Reference Materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877. doi: 10.1039/c1ja10105f

    [27]

    张德贤,戴塔根,胡毅.磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J].岩矿测试,2012,31(1):120-126. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120116&flag=1

    Zhang D X,Dai T G,Hu Y.Analysis of Trace Elements in Magnetites Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2012,31(1):120-126. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120116&flag=1

    [28]

    陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201504009.htm

    Chen H Y,Han J S.Study of Magnetite:Problems and Future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201504009.htm

    [29]

    Leach A M,Hieftje G M.Methods for Shot-to-Shot Normalization in Laser Ablation with an Inductively Coupled Plasma Time-of-Flight Mass Spectrometer[J].Journal of Analytical Atomic Spectrometry,2000,15(9):1121-1124. doi: 10.1039/b001968m

    [30]

    Leach A M,Hieftje G M.Identification of Alloys Using Single Shot Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):852-857. doi: 10.1039/b203523p

    [31]

    Latkoczy C,Müller Y,Schmutz P,et al.Quantitative Element Mapping of Mg Alloys by Laser Ablation ICP-MS and EPMA[J].Applied Surface Science,2005,252(1):127-132. doi: 10.1016/j.apsusc.2005.02.040

    [32]

    Halicz L,Günther D.Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration[J].Journal of Analytical Atomic Spectrometry,2004,19(12):1539-1545. doi: 10.1039/B410132D

    [33]

    Guillong M,Hametner K,Reusser E,et al.Preliminary Characterisation of New Glass Reference Materials (GSA-1G,GSC-1G,GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm,213 nm and 266 nm Wavelengths[J].Geostandards and Geoanalytical Research,2005,29(3):315-331. doi: 10.1111/ggr.2005.29.issue-3

    [34]

    Liu Y,Hu Z,Gao S,et al.In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [35]

    Guillong M,Günther D.Effect of Particle Size Distri-bution on ICP-induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):831-837. doi: 10.1039/B202988J

    [36]

    Jackson S E,Günther D.The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2003,18(3):205-212. doi: 10.1039/b209620j

    [37]

    Longerich H P,Jackson S E,Günther D.Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation[J].Journal of Analytical Atomic Spectrometry,1996,11(9):899-904. doi: 10.1039/JA9961100899

    [38]

    Raju P V S,Barnes S J,Savard D.Using Magnetite as an Indicator Mineral,Step 1:Calibration of LA-ICP-MS[C]//Proceedings of 11th International Platinum Symposium.Ontario:Ontario Geological Survey,2010:439-442.

    [39]

    Hu H,Lentz D,Li J W,et al.Reequilibration Processes in Magnetite from Iron Skarn Deposits[J].Economic Geology,2015,110(1):1-8. doi: 10.2113/econgeo.110.1.1

    [40]

    Hu H,Li J W,Lentz D,et al.Dissolution-Reprecipitation Process of Magnetite from the Chengchao Iron Deposit:Insights into Ore Genesis and Implication for in-situ Chemical Analysis of Magnetite[J].Ore Geology Reviews,2014,57:393-405. doi: 10.1016/j.oregeorev.2013.07.008

  • 加载中

(3)

(3)

计量
  • 文章访问数:  2443
  • PDF下载数:  47
  • 施引文献:  0
出版历程
收稿日期:  2016-09-23
修回日期:  2016-11-02
录用日期:  2016-11-16

目录