Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration
-
摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)常用于磁铁矿原位微量元素分析,按照校正策略不同,主要分为内标法和无内标法。内标法需要用电子探针(EMPA)预先测定磁铁矿中内标元素Fe的含量,过程较繁琐,且待测元素含量会受到内标元素含量测定的影响。本文采用铁含量较高的玄武质玻璃BCR-2G、BIR-1G、BHVO-2G和GSE-1G作为外标,避免了内标元素含量的测定,建立了无内标-多外标校正LA-ICP-MS测定磁铁矿微量元素组成的分析方法。利用该方法测定了科马提岩玻璃GOR-128g和自然岩浆磁铁矿BC 28的微量元素组成以评估方法的可靠性。结果表明,科马提岩玻璃的测定结果与推荐值及前人内标法的测定值一致,多数元素的相对标准偏差RSD<5%;自然岩浆磁铁矿的测定结果与推荐值相比,多数元素的RSD<7%,低于前人内标法的RSD(<15%)。由此说明无内标-多外标法可以实现富铁硅酸岩或磁铁矿微量元素含量的准确校正,克服了基体效应的影响。因此,无内标-多外标法是一种原位测定磁铁矿微量元素含量的快速、准确方法,具有一定的应用潜力。
-
关键词:
- 磁铁矿 /
- 微量元素 /
- 无内标-多外标 /
- 激光剥蚀等离子体质谱法 /
- 基体效应
Abstract: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) is commonly used to analyze trace elements in magnetite, which can be divided into internal standard (IS) and no internal standard (NIS) methods according to calibration techniques. IS method involves a relatively complex process for the determination of Fe content by Electron Microprobe. Moreover, elemental content are affected by the analytical accuracy of IS elemental iron. An analytical method for determination of trace elements in magnetite by LA-ICP-MS using multiple external standards (basaltic glasses BCR-2g, BIR-1g, BHVO-2g, GSE-1G) without an IS element has been developed. The proposed method avoids the determination of the IS element. Trace element compositions of komatitic glass (GOR-128g) and natural magmatic magnetite (BC 28) were determined by the proposed method and used to evaluate the reliability of the method. Results show that the analytical values of komatitic glass are consistent with the certified values and reported values by the existing IS method. The relative standard deviation (RSD) of most elements is smaller than 5%. Most elements of natural magmatic magnetite have RSD better than 7% between the analytical values and the certified values, and RSD better than 15% between the analytical values and the reported values by the IS method. This indicates that multiple external standards without an IS method can determine accurate calibration of trace element concentrations of iron-rich silicates and magnetite, overcoming the matrix effects. Therefore, multiple external standards without an IS method is a fast and precise method for determination of trace elements in magnetite, which has a great application potential. -
表 1 磁铁矿微量元素原位分析标样类型及相关元素含量
Table 1. Types and element contents of Standard Reference Materials for in situ trace element analyses of magnetite
标样名称 标样类型 Fe含量(%) 其他元素含量 (μg/g) 研制机构 NIST 610 合成硅酸盐玻璃 0.046 25~488 美国国家标准与 技术研究院 (NIST) NIST 361 铁合金 95.6 0.3~20000 NIST 2782 工业残渣 26.9 0.06~20300 GSE-1G 合成玄武岩玻璃 9.88 1.17~250600 美国地质调查局 (USGS) BCR-2G 玄武岩玻璃 9.66 0.5~252460 BHVO-2G 玄武岩玻璃 8.63 0.3~232866 BIR-1G 玄武岩玻璃 7.91 0.3~223813 GOR-2G 科马提岩玻璃 7.6 0.01~215133 MASS-1 硫化物压饼 15.6 0.03~276000 注:表中标样元素含量参考GeoReM数据库,具体见网站地址http://georem.mpch-mainz.gwdg.de/sample_query.asp。 表 2 LA-ICP-MS微量元素分析仪器参数
Table 2. Equipment parameters for LA-ICP-MS trace elemenetal analyses
ICP-MS工作参数 设定值 激光工作参数 设定值 射频功率 1550 W 波长 193 nm 等离子体气(Ar)流量 15 L/min 能量密度 8.5 J/cm2 辅助气(Ar)流量 1.02 L/min 载气 He 检测器 Dual(脉冲和模拟计数) 剥蚀方式 点剥蚀 扫描模式 跳峰 剥蚀束斑大小 32 μm 单位质量扫描时间 6 ms 剥蚀频率 6 Hz 获取模式 时间分辨率分析 脉冲数 300 表 3 监控样科马提质玻璃GOR-128g和自然岩浆磁铁矿BC 28微量元素分析结果
Table 3. Element concentrations of monitoring samples,komatitic glass GOR-128g and natural magmatic magnetite BC 28
元素 检测限 (μg/g) GOR-128g BC 28 测定值(μg/g) 推荐值(μg/g) 报道值(μg/g) 测定值(μg/g) 推荐值 (μg/g) 报道值(μg/g) 平均值 标准偏差 平均值 标准偏差 平均值 标准偏差 平均值 标准偏差 平均值 标准偏差 Mg 1.76 147258 8170 156826 1810 150143 23608 11933 1688 10860 9580 1463 Al 3.59 51866 1524 52446 900 49664 4221 22043 2322 19440 20116 3432 Sc 0.78 31.4 1.4 32.1 1.1 31.6 2.7 28 2 28.7 23.5 2.1 Ti 2.09 1578 90 1727 72 1521 147 87557 3358 82020 74459 5765 V 0.27 185 5 189 13 175 13 10217 594 9059 8822 623 Cr 4.76 2194 78 2272 171 1852 249 1429 83 1096 1150 100 Mn 2.16 1471 51 1361 70 1332 61 2409 297 1988 1824 118 Co 0.19 94.8 2.5 92.4 6.2 91.1 15.3 316 39 225 280 24 Ni 2.53 1168 53 1074 61 952 156 641 74 536 565 44 Cu 2.52 66.8 3.1 63.8 12.5 68 9 24 22 31 52 36 Zn 1.37 72.9 3.3 74.7 6.7 112 26 548 81 500 569 134 Ga 0.39 9.3 0.6 8.67 1.07 6.58 0.36 55 9 - 39 3 Ge 0.97 1.2 0.4 0.96 - 0.89 0.24 - - - - - Y 0.01 11.2 0.6 11.8 0.5 12.7 1.3 - - - - - Zr 0.23 9.5 0.9 10 0.5 11.6 1.9 22 4 26.1 1.8 Nb 0.03 0.080 0.024 0.099 0.007 0.101 0.028 1.55 0.10 1.47 0.17 Mo 0.10 0.606 0.140 0.71 0.26 0.67 0.31 - - - - - Hf <0.001 0.327 0.065 0.35 0.02 0.38 0.06 - - - - - Ta 0.003 0.015 0.005 0.019 0.001 0.024 0.009 - - - - - W 0.006 15.7 0.6 15.5 2.4 15 2 - - - - - Sn - - - - - - - 1.73 0.58 2.29 0.78 注:检测限为32 μm束斑时的检测限;测定值的平均值为50个样品的平均值;GOR-128g和BC 28的推荐值及报道值均引自Dare等[11];表中“-”代表缺失值。 -
[1] Jackson S E,Longerich H P,Dunning G R,et al.The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ Trace-element Determinations in Minerals[J].Canadian Mineralogist,1992,30:1049-1064.
[2] Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].The Canadian Mineralogist,1995,33:303-312.
[3] Russo R E,Mao X L,Liu H C,et al.Laser Ablation in Analytical Chemistry-A Review[J].Talanta,2002,57(3):425-451. doi: 10.1016/S0039-9140(02)00053-X
[4] Mokgalaka N S,Gardea-Torresdey J L.Laser Ablation Inductively Coupled Plasma Mass Spectrometry:Principles and Applications[J].Applied Spectroscopy Reviews,2006,41(2):131-150. doi: 10.1080/05704920500510703
[5] Cook N,Ciobanu C L,George L,et al.Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry:Approaches and Opportunities[J].Minerals,2016,6(111):1-34.
[6] Norman M,Robinson P,Clark D.Major- and Trace-element Analysis of Sulfide Ores by Laser-Ablation ICP-MS,Solution ICP-MS,and XRF:New Data on International Reference Materials[J].The Canadian Mineralogist,2003,41(2):293-305. doi: 10.2113/gscanmin.41.2.293
[7] Müller A,Wiedenbeck M,van Den Kerkhof A M,et al.Trace Elements in Quartz-A Combined Electron Microprobe,Secondary Ion Mass Spectrometry,Laser-Ablation ICP-MS,and Cathodoluminescence Study[J].European Journal of Mineralogy,2003,15(4):747-763. doi: 10.1127/0935-1221/2003/0015-0747
[8] Danyushevsky L,Robinson P,Gilbert S,et al.Routine Quantitative Multi-element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects[J].Geochemistry:Exploration,Environment,Analysis,2011,11:51-60. doi: 10.1144/1467-7873/09-244
[9] Ding L,Yang G,Xia F,et al.A LA-ICP-MS Sulphide Calibration Standard Based on a Chalcogenide Glass[J].Mineralogical Magazine,2011,75(2):279-287. doi: 10.1180/minmag.2011.075.2.279
[10] 吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1
Wu S T,Wang Y P,Xu C X.Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1
[11] Dare S A S,Barnes S J,Beaudoin G.Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid,Sudbury,Canada:Implications for Provenance Discrimination[J].Geochimica et Cosmochimica Acta,2012,88:27-50. doi: 10.1016/j.gca.2012.04.032
[12] Gao J F,Zhou M F,Lightfoot P C,et al.Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit,Xinjiang,Northwestern China[J].Economic Geology,2013,108:1833-1848. doi: 10.2113/econgeo.108.8.1833
[13] Nadoll P,Angerer T,Mauk J L,et al.The Chemistry of Hydrothermal Magnetite:A Review[J].Ore Geology Reviews,2014,61:1-32. doi: 10.1016/j.oregeorev.2013.12.013
[14] Liu P P,Zhou M F,Chen W T,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province,SW China[J].Ore Geology Reviews,2015,65:853-871. doi: 10.1016/j.oregeorev.2014.09.002
[15] Huang X W,Zhou M F,Qi L,et al.Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-hydrothermal Fe Deposit,NW China[J].Mineralium Deposita,2013,48(8):925-946. doi: 10.1007/s00126-013-0467-2
[16] Huang X W,Gao J F,Qi L,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite and Re-Os Dating of Pyrite:The Tianhu Hydrothermally Remobilized Sedimentary Fe Deposit,NW China[J].Ore Geology Reviews,2015,65:900-916. doi: 10.1016/j.oregeorev.2014.07.020
[17] Huang X W,Zhou M F,Qiu Y Z,et al.In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Bayan Obo Fe-REE-Nb Deposit,North China[J].Ore Geology Reviews,2015,65:884-899. doi: 10.1016/j.oregeorev.2014.09.010
[18] Chen W T,Zhou M F,Gao J F,et al.Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province,SW China[J].Mineralium Deposita,2015,50(7):795-809. doi: 10.1007/s00126-014-0575-7
[19] Nadoll P,Mauk J L,Leveille R A,et al.Geochemistry of Magnetite from Porphyry Cu and Skarn Deposits in the Southwestern United States[J].Mineralium Deposita,2015,50(4):493-515. doi: 10.1007/s00126-014-0539-y
[20] Dupuis C,Beaudoin G.Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types[J].Mineralium Deposita,2011,46(3):1-17.
[21] Dare S A S,Barnes S J,Beaudoin G,et al.Trace Elements in Magnetite as Petrogenetic Indicators[J].Mineralium Deposita,2014,49(7):785-796. doi: 10.1007/s00126-014-0529-0
[22] Huang X,Qi L,Meng Y.Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region,Eastern Tianshan Orogenic Belt,NW China[J].Acta Geologica Sinica (English Edition),2014,88(1):176-195. doi: 10.1111/acgs.2014.88.issue-1
[23] Boutroy E,Dare S A S,Beaudoin G,et al.Magnetite Composition in Ni-Cu-PGE Deposits Worldwide and Its Application to Mineral Exploration[J].Journal of Geochemical Exploration,2014,145:64-81. doi: 10.1016/j.gexplo.2014.05.010
[24] Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al.Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes:Application to Mineral Exploration[J].Ore Geology Reviews,2016,78:388-408. doi: 10.1016/j.oregeorev.2016.04.014
[25] Makvandi S,Ghasemzadeh-Barvarz M,Beaudoin G,et al. Principal Component Analysis of Magnetite Composition from Volcanogenic Massive Sulfide Deposits:Case Studies from the Izok Lake (Nunavut,Canada) and Halfmile Lake (New Brunswick,Canada) Deposits[J].Ore Geology Reviews,2016,72:60-85. doi: 10.1016/j.oregeorev.2015.06.023
[26] Nadoll P,Koenig A E.LA-ICP-MS of Magnetite:Methods and Reference Materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877. doi: 10.1039/c1ja10105f
[27] 张德贤,戴塔根,胡毅.磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J].岩矿测试,2012,31(1):120-126. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120116&flag=1
Zhang D X,Dai T G,Hu Y.Analysis of Trace Elements in Magnetites Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2012,31(1):120-126. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20120116&flag=1
[28] 陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201504009.htm
Chen H Y,Han J S.Study of Magnetite:Problems and Future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201504009.htm
[29] Leach A M,Hieftje G M.Methods for Shot-to-Shot Normalization in Laser Ablation with an Inductively Coupled Plasma Time-of-Flight Mass Spectrometer[J].Journal of Analytical Atomic Spectrometry,2000,15(9):1121-1124. doi: 10.1039/b001968m
[30] Leach A M,Hieftje G M.Identification of Alloys Using Single Shot Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):852-857. doi: 10.1039/b203523p
[31] Latkoczy C,Müller Y,Schmutz P,et al.Quantitative Element Mapping of Mg Alloys by Laser Ablation ICP-MS and EPMA[J].Applied Surface Science,2005,252(1):127-132. doi: 10.1016/j.apsusc.2005.02.040
[32] Halicz L,Günther D.Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration[J].Journal of Analytical Atomic Spectrometry,2004,19(12):1539-1545. doi: 10.1039/B410132D
[33] Guillong M,Hametner K,Reusser E,et al.Preliminary Characterisation of New Glass Reference Materials (GSA-1G,GSC-1G,GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm,213 nm and 266 nm Wavelengths[J].Geostandards and Geoanalytical Research,2005,29(3):315-331. doi: 10.1111/ggr.2005.29.issue-3
[34] Liu Y,Hu Z,Gao S,et al.In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
[35] Guillong M,Günther D.Effect of Particle Size Distri-bution on ICP-induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2002,17(8):831-837. doi: 10.1039/B202988J
[36] Jackson S E,Günther D.The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2003,18(3):205-212. doi: 10.1039/b209620j
[37] Longerich H P,Jackson S E,Günther D.Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation[J].Journal of Analytical Atomic Spectrometry,1996,11(9):899-904. doi: 10.1039/JA9961100899
[38] Raju P V S,Barnes S J,Savard D.Using Magnetite as an Indicator Mineral,Step 1:Calibration of LA-ICP-MS[C]//Proceedings of 11th International Platinum Symposium.Ontario:Ontario Geological Survey,2010:439-442.
[39] Hu H,Lentz D,Li J W,et al.Reequilibration Processes in Magnetite from Iron Skarn Deposits[J].Economic Geology,2015,110(1):1-8. doi: 10.2113/econgeo.110.1.1
[40] Hu H,Li J W,Lentz D,et al.Dissolution-Reprecipitation Process of Magnetite from the Chengchao Iron Deposit:Insights into Ore Genesis and Implication for in-situ Chemical Analysis of Magnetite[J].Ore Geology Reviews,2014,57:393-405. doi: 10.1016/j.oregeorev.2013.07.008