Phase State Analysis Method and Application of Molybdenum in Soil Samples of Special Landscape Exploration in Heilongjiang Province
-
摘要: 多年来通过化探扫面的全量异常分析结果发现的矿床并不多,在表生条件下,不同的元素随着区域景观条件的不同,其迁移、沉积规律以及元素原始的赋存状态也不同,化探分析给出元素的全量分析结果并不能完全准确地反映成矿情况,因而元素的存在形式和存在状态对于判断是否是成矿异常至关重要。本文建立了黑龙江地质景观特点的化探土壤样品中钼的相态分析方法,将钼的相态分为五相:水提取相、弱有机结合相、氧化物结合相、铁结合相、残渣相。采用ICP-MS测定钼元素各相态的检出限分别为:水提取相0.0011μg/g,弱有机结合相0.020μg/g,氧化物结合相0.100μg/g,铁结合相0.100μg/g,残渣相0.100μg/g。利用该方法分析了黑龙江某地有钼全量异常的样品,结果表明钼主要以铁结合相存在,属脉型产状,符合钼矿床的类型之一,研究结果提高了利用化探异常找矿的准确性。
-
关键词:
- 化探土壤 /
- 钼 /
- 相态分析 /
- 电感耦合等离子体质谱法 /
- 成矿异常
Abstract:BACKGROUNDOver the years, the total anomaly analysis results of geochemical exploration have found that there are not many deposits. Under the conditions of epigenetic conditions, different elements have different migration and deposition laws and primitive occurrence states. The geochemical analysis gives the full analysis of the elements cannot accurately reflect the mineralization anomalies situation. Therefore, the existence form and existence state of the elements are crucial for judging whether it is a metallogenic anomaly. OBJECTIVESThis paper establishes the phase analysis method of molybdenum in geochemical soil samples from the characteristics of Heilongjiang geological landscape. METHODSThe phase states of molybdenum are divided into five phases:water extraction phase, weak organic binding phase, oxide binding phase, Fe-binding phase, and residue phase. The detection limits of molybdenum phases determined by ICP-MS are:water extraction phase 0.0011μg/g, weak organic binding phase 0.020μg/g, oxide binding phase 0.100μg/g, Fe-binding phase 0.100μg/g, the residue phase is 0.100μg/g. RESULTSThe method was used to analyze the samples with molybdenum anomaly in a certain part of Heilongjiang Province. The results showed that molybdenum was mainly composed of Fe-binding phase, which belonged to the vein type and conformed to one of the types of molybdenum deposits. CONCLUSIONSThe method improves the accuracy of prospecting using geochemical anomalies. -
表 1 电感耦合等离子体质谱仪工作条件
Table 1. Working conditions of the ICP-MS instrument
工作参数 设定值 ICP功率 1250W 冷却气流量 13.0L/min 辅助气流量 1.05L/min 雾化气流量 0.82L/min 取样锥孔径 1.0mm 跳峰 3点/质量 停留时间 20ms/点 扫描次数 40次 测量时间 35s 截取锥孔径 0.7mm 表 2 钼相态分析方法的精密度
Table 2. Precision tests of the method for Mo phase analysis
标准物质编号 RSD(%) 水提取相 弱有机结合相 氧化物结合相 铁结合相 残渣相 GBW07401 8.19 4.76 7.92 3.03 8.12 GBW07405 17.27 5.76 9.91 1.96 4.18 GBW07406 13.28 5.39 7.91 6.13 3.90 GBW07407 17.02 9.96 8.03 5.64 9.85 GBW07429 40.07 8.22 8.01 3.67 4.30 表 3 钼相态分析方法的检出限
Table 3. Detection limits of the method for Mo phase analysis
钼元素相态 标准偏差(μg/g) 方法检出限(μg/g) 水提取相 0.0004 0.0011 弱有机结合相 0.007 0.020 氧化物结合相 0.033 0.100 铁结合相 0.033 0.100 残渣相 0.033 0.100 全量 0.033 0.098 表 4 黑龙江省某地土壤试验样品钼的相态分析结果
Table 4. Analytical results of Mo phase in soil samples of Helongjiang Province
样品编号 钼各相态的含量(μg/g) 水提取相 弱有机结合相 氧化物结合相 铁结合相 残渣相 加和 全量 1 0.010 0.41 0.83 4.02 0.51 5.78 5.95 2 0.020 1.70 2.15 13.9 0.97 18.8 17.4 3 0.019 1.75 2.98 27.0 0.91 32.7 29.0 4 0.025 1.02 1.92 34.3 0.97 38.3 33.9 5 0.018 0.92 4.18 46.8 1.04 52.9 46.1 6 0.023 1.25 2.32 86.2 1.93 91.7 79.3 7 0.032 1.09 2.12 102 1.95 107 92.6 8 0.065 1.76 3.34 94.7 1.42 101 86.0 9 0.023 0.76 1.49 46.2 0.66 49.1 42.5 10 0.62 14.1 27.8 209 2.60 254 220 11 2.14 31.1 51.6 196 2.42 283 242 12 1.96 28.6 40.8 123 1.57 196 167 13 0.008 0.26 0.84 17.0 0.43 18.5 16.8 14 0.036 0.98 3.02 86.0 0.96 91.0 77.5 15 0.059 0.90 3.16 155 1.50 160 148 16 0.016 0.46 1.02 20.7 0.31 22.5 19.3 17 0.008 0.21 0.43 8.00 0.32 8.97 8.72 18 0.011 0.19 0.28 5.22 0.23 5.93 5.55 19 0.006 1.72 3.27 9.43 0.39 14.8 16.0 20 0.007 2.32 3.74 8.05 0.47 14.6 13.7 21 0.005 1.48 2.68 4.90 0.38 9.44 8.70 22 0.007 2.06 3.61 5.29 0.29 11.3 10.1 23 0.003 0.84 1.44 15.8 0.52 18.6 21.0 24 0.009 1.93 4.30 118 1.70 125 134 25 0.014 0.88 2.12 32.8 0.83 36.6 43.5 26 0.007 0.77 1.16 5.32 0.59 7.84 6.79 27 0.011 7.59 11.1 33.8 1.10 53.6 61.9 28 0.010 2.53 3.55 30.2 1.19 37.5 41.7 29 0.012 4.55 6.86 32.5 1.66 45.6 53.4 30 0.004 4.29 7.24 39.5 1.09 52.1 57.0 31 0.013 14.9 32.7 25.3 2.17 75.1 87.9 32 0.008 1.39 1.71 3.91 0.84 7.86 9.32 33 0.014 0.86 2.17 2.99 0.28 6.32 6.02 34 0.015 0.88 2.40 2.82 0.45 6.57 5.97 35 0.014 1.13 2.38 9.86 1.29 14.7 16.3 36 0.011 0.26 0.61 3.31 0.99 5.18 5.90 37 0.005 3.11 3.80 9.75 2.22 18.9 22.9 38 0.013 1.66 2.15 6.75 2.38 13.0 14.4 -
[1] 刘崇民, 胡树起, 马声明, 等.成矿元素相态对地球化学异常的作用[J].物探与化探, 2013, 37(6):1049-1055. http://d.old.wanfangdata.com.cn/Periodical/wtyht201306018
Liu C M, Hu S Q, Ma S M, et al.Phase behavior of geochemical anomaly of ore-forming elements[J].Geophysics and Geochemistry, 2013, 37(6):1049-1055. http://d.old.wanfangdata.com.cn/Periodical/wtyht201306018
[2] 龚美菱.相态分析与地质找矿(第一版)[M].北京:地质出版社, 1994.
Gong M L.Phase Analysis and Geological Prospecting (First Edition)[M].Beijing:Geological Publishing House, 1994.
[3] 迟永坤, 张鹰.相态研究在化探异常评价中的应用[J].地质与资源, 2003, 12(1):48-53. doi: 10.3969/j.issn.1671-1947.2003.01.008
Chi Y K, Zhang Y.Application of phase state study in geochemical anomaly evaluation[J].Geology and Resources, 2003, 12(1):48-53. doi: 10.3969/j.issn.1671-1947.2003.01.008
[4] 周天泽.无机微量元素形态分析方法学简介[J].分析试验室, 1991, 10(3):44-50. http://d.old.wanfangdata.com.cn/NSTLQK/10.1055-s-0030-1265679/
Zhou T Z.Inorganic trace element morphology analysis methodology introduction[J].Chinese Journal of Analysis Laboratory, 1991, 10(3):44-50. http://d.old.wanfangdata.com.cn/NSTLQK/10.1055-s-0030-1265679/
[5] 王亚平, 黄毅, 王苏明, 等.土壤和水系沉积物中元素的化学形态及其顺序提取法[J].地质通报, 2005, 24(8):728-733. doi: 10.3969/j.issn.1671-2552.2005.08.009
Wang Y P, Huang Y, Wang S M, et al.Chemical morphology and sequential extraction of elements in soil and water sediments[J].Geological Bulletin of China, 2005, 24(8):728-733. doi: 10.3969/j.issn.1671-2552.2005.08.009
[6] 赵伟, 王玉林, 钟莅湘, 等.土壤样品中贵金属活动态提取技术[J].岩矿测试, 2016, 35(2):212-216. http://www.ykcs.ac.cn/article/id/ykcs_20100303
Zhao W, Wang Y L, Zhong L X, et al.Precious metal forms in soil sample extraction[J].Rock and Mineral Analysis, 2016, 35(2):212-216. http://www.ykcs.ac.cn/article/id/ykcs_20100303
[7] 刘红艳, 张瑞鹏, 刘淑芹, 等.金川铜镍矿区土壤多元素相态分析方法[J].实验室研究与探索, 2013, 32(9):28-33. doi: 10.3969/j.issn.1006-7167.2013.09.008
Liu H Y, Zhang R P, Liu S Q, et al.Method of phase analysis of soil elements in Jinchuan copper-nickel mine[J].Laboratory Research and Exploration, 2013, 32(9):28-33. doi: 10.3969/j.issn.1006-7167.2013.09.008
[8] 黄宝贵, 张志勇, 杨林, 等.中国化学物相分析研究的新成就(下)[J].中国无机分析化学, 2011, 1(3):8-15. doi: 10.3969/j.issn.2095-1035.2011.03.0002
Huang B G, Zhang Z Y, Yang L, et al.Achievements of study on chemical phase analysis in China (Ⅱ)[J].Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(3):8-15. doi: 10.3969/j.issn.2095-1035.2011.03.0002
[9] 许俊蕾, 张晓娟, 邱海鸥, 等.铅锌矿中硫的相态分析[J].分析试验室, 2014, 33(4):404-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201404008
Xu J L, Zhang X J, Qiu H O, et al.Phase state analysis of sulphur in lead and zinc mine[J].Analysis Laboratory, 2014, 33(4):404-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201404008
[10] 刘文彧, 祁士江, 陆继龙, 等.甘肃阳山金矿安坝矿段土壤中金的相态分析[J].世界地理, 2014, 33(1):112-118. http://d.old.wanfangdata.com.cn/Periodical/sjdz201401011
Liu W Y, Qi S J, Lu J L, et al.Phase analysis on Au in the soil of Anba ore block, Yangshan gold deposit, Gansu Province[J].World Geography, 2014, 33(1):112-118. http://d.old.wanfangdata.com.cn/Periodical/sjdz201401011
[11] 胡一珠, 邓天龙, 胡志中, 等.土壤样品中汞的形态分析研究进展[J].广东微量元素科学, 2010, 17(11):19-21. doi: 10.3969/j.issn.1006-446X.2010.11.002
Hu Y Z, Deng T L, Hu Z Z, et al.Research progress on speciation analysis of mercury in soil samples[J].Guangdong Microelement Science, 2010, 17(11):19-21. doi: 10.3969/j.issn.1006-446X.2010.11.002