中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景

付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1-13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002
引用本文: 付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1-13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002
Shan-ling FU, Cheng-hai ZHAO. Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002
Citation: Shan-ling FU, Cheng-hai ZHAO. Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002

原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景

  • 基金项目:
    国家自然科学基金重点项目(41230316);国家重点基础研究发展规划项目(2014CB440906)
详细信息
    作者简介: 付山岭, 博士, 助理研究员, 从事矿床地球化学和岩石学研究。E-mail:fushanling@mail.gyig.ac.cn
  • 中图分类号: P597.3

Progress of in situ U-Th/He Isotopic Dating Technique and Its Application to Low Temperature Deposits

  • 应用传统单颗粒方法对目标矿物进行定年具有较高要求(如U、Th等母体同位素均匀分布),需要耗时的酸溶过程,同时还需进行α粒子射出效应校正。原位U-Th/He同位素定年技术是近年发展起来的一种定年技术,其主要原理是采用激光加热目标矿物,并通过与激光系统连接的稀有气体质谱(Alphachron)和电感耦合等离子体质谱(ICP-MS)分别完成4He和U、Th等母体同位素分析,将4He和U、Th分析结果代入年龄公式计算即可获得目标矿物的U-Th/He年龄。本文阐述了原位U-Th/He同位素定年技术的主要原理、实验测试流程、适用矿物等,重点对原位U-Th/He同位素定年的技术难点和低温矿床学应用前景进行了分析。相对于传统单颗粒方法,原位测试方法解决了两个关键问题:①无需进行α粒子射出效应的校正,提高了定年结果的可靠性和准确度;②能完成母体同位素分布不均匀样品的测试,扩展了U-Th/He同位素定年的应用范围。尽管原位U-Th/He同位素定年技术在侧向加热效应、剥蚀坑体积测定以及标准矿物等方面尚存在一些亟待解决的问题,但已在硅酸盐、磷酸盐、钛铁氧化物等矿物的年代学研究方面展示了良好的应用前景。随着原位U-Th/He同位素定年技术的发展和进步,尤其是硫化物的U-Th/He同位素定年的发展,将为解决低温矿床的年代学问题提供一种新的思路。
  • 加载中
  • 图 1  矿物颗粒内U-Th分布特征及其对定年结果的影响 (据文献[46]修改)

    Figure 1. 

    图 2  剥蚀坑形态与剥蚀深度的关系示意图

    Figure 2. 

    图 3  不同矿物的U-Th/He同位素体系封闭温度

    Figure 3. 

  • [1]

    Hurley P M.Alpha ionization damage as a cause of low helium ratios[J].Transactions American Geophysical Union, 1952, 33(2):174-183. doi: 10.1029/TR033i002p00174

    [2]

    Hurley P M, Larsen Jr E S, Gottfried D.Comparison of radiogenic helium and lead in zircon[J].Geochimica et Cosmochimica Acta, 1956, 9(1-2):98-102. doi: 10.1016/0016-7037(56)90060-6

    [3]

    Cox S E, Farley K A, Hemming S R.Insights into the age of the Mono Lake Excursion and magmatic crystal residence time from (U-Th)/He and 230Th dating of volcanic allanite[J].Earth and Planetary Science Letters, 2012, 319-320:178-184. doi: 10.1016/j.epsl.2011.12.025

    [4]

    Blackburn T J, Stockli D F, Walker J D.Magnetite (U-Th)/He dating and its application the geochronology of intermediate to mafic volcanic rocks[J].Earth and Planetary Science Letters, 2007, 259(3-4):360-371. doi: 10.1016/j.epsl.2007.04.044

    [5]

    Blackburn T J, Stockli D F, Carlson R W, et al.(U-Th)/He dating of kimberlites-A case study from North-Eastern Kansas[J].Earth and Planetary Science Letters, 2008, 275(1-2):111-120. doi: 10.1016/j.epsl.2008.08.006

    [6]

    邱楠生, Reiners P W, 梅庆华, 等.(U-Th)/He年龄在沉积盆地构造-热演化研究中的应用--以塔里木盆地KQ1井为例[J].地球物理学报, 2009, 52(7):1825-1835. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907018.htm

    Qiu N S, Reiners P W, Mei Q H, et al.Application of the (U-Th)/He thermochronometry to the tectono-thermal evolution of sedimentary basin-A case history of Well KQ1 in the Tarim Basin[J].Chinese Journal of Geophysics, 2009, 52(7):1825-1835. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200907018.htm

    [7]

    俞顺, 陈文, 吕修祥, 等.(U-Th)/He技术约束下库车盆地北缘构造热演化--以吐孜2井为例[J].地球物理学报, 2014, 57(1):62-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401007.htm

    Yu S, Chen W, Lü X X, et al.(U-Th)/He thermochronometry constraints on the Mesozoic-Cenozoic tectono-thermal evolution of Kuqa Basin:A case study of well TZ2[J].Chinese Journal of Geophysics, 2014, 57(1):62-74. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401007.htm

    [8]

    孙敬博, 孙腾飞, 陈文, 等.新疆东天山红云滩地区构造-热演化探讨:来自Ar-Ar和 (U-Th)/He热年代学的约束[J].岩石学报, 2015, 31(12):3732-3742.

    Sun J B, Sun T F, Chen W, et al.Thermo-tectono evolution history of Hongyuntan area, Eastern Tianshan, Xinjiang:Constrained from Ar-Ar and (U-Th)/He dating[J].Acta Petrologica Sinica, 2015, 31:3732-3742.

    [9]

    Dai J G, Wang C S, Hourigan J, et al.Multi-stage tectono-magmatic events of the Eastern Kunlun Range, Northern Tibet:Insights from U-Pb geochronology and (U-Th)/He thermochronology[J].Tectonophysics, 2013, 599:97-106. doi: 10.1016/j.tecto.2013.04.005

    [10]

    Wolff R, Dunkl I, Lange J M, et al.Superposition of burial and hydrothermal events:Post-Variscan thermal evolution of the Erzgebirge, Germany[J].Terra Nova, 2015, 27(4):292-299. doi: 10.1111/ter.12159

    [11]

    周祖翼, 许长海, Reiners P W, 等.大别山天堂寨地区晚白垩世以来剥露历史的 (U-Th)/He和裂变径迹分析证据[J].科学通报, 2003, 48(6):598-602. doi: 10.1360/03tb9127

    Zhou Z Y, Xu C H, Reiners P W, et al.Evidence of (U-Th)/He & fission track analysis on denudation history after Late Cretaceous in the Tiantangzhai area of the Dabieshan Mountain[J].Chinese Science Bulletin, 2003, 48(6):598-602. doi: 10.1360/03tb9127

    [12]

    Qiu N S, Jiang G, Mei Q H, et al.The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China:Constraints from (U-Th)/He ages, apatite fission track and vitrinite reflectance data[J].Journal of Asian Earth Sciences, 2011, 41(6):551-563. doi: 10.1016/j.jseaes.2011.02.008

    [13]

    Wang E, Kirby E, Furlong K P, et al.Two-phase growth of high topography in eastern Tibet during the Cenozoic[J].Nature Geoscience, 2012, 5:640-645. doi: 10.1038/ngeo1538

    [14]

    Yu S, Chen W, Evans N J, et al.Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry[J].Tectonophysics, 2014, 630:166-182. doi: 10.1016/j.tecto.2014.05.021

    [15]

    Sobczyk A, Danisik M, Aleksandrowski P, et al.Post-Variscan cooling history of the central Western Sudetes (NE Bohemian Massif, Poland) constrained by apatite fission-track and zircon (U-Th)/He thermochronology[J].Tectonophysics, 2015, 649:47-57. doi: 10.1016/j.tecto.2015.02.021

    [16]

    Ehlers T A, Farley K A.Apatite (U-Th)/He thermo-chronometry:Methods and applications to problems in tectonic and surface processes[J]. Earth and Planetary Science Letters, 2003, 206(1-2):1-14. doi: 10.1016/S0012-821X(02)01069-5

    [17]

    Ehlers T A, Farley K A, Rusmore M E.Apatite (U-Th)/He signal of large-magnitude accelerated glacial erosion, Southwest British Columbia[J].Geology, 2006, 34(9):765-768. doi: 10.1130/G22507.1

    [18]

    Campbell I H, Reiners P W, Allen C M, et al.He-Pb double dating of detrital zircons from the Ganges and Indus Rivers:Implications for quantifying sediments recycling and provenance studies[J].Earth and Planetary Science Letters, 2005, 237(3-4):402-432. doi: 10.1016/j.epsl.2005.06.043

    [19]

    Rahl J M, Ehlers T A, van der Pluijm B A.Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits[J].Earth and Planetary Science Letters, 2007, 256(1-2):147-161. doi: 10.1016/j.epsl.2007.01.020

    [20]

    Pi T, Sole J, Taran Y.(U-Th)/He dating of fluorite:Application to the La Azul fluorspar deposit in the Taxco mining district, Mexico[J].Mineralium Deposita, 2005, 39(8):976-982. doi: 10.1007/s00126-004-0443-y

    [21]

    Cabral A R, Eugster O, Brauns M, et al.Direct dating of gold by radiogenic helium:Testing the method on gold from Diamantina, Minas Gerais, Brazil[J].Geology, 2013, 41(2):163-166. doi: 10.1130/G33751.1

    [22]

    Wolff R, Dunkl I, Kempe U, et al.The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany:Constraints from fluorite (U-Th-Sm)/He thermochronology[J].Economic Geology, 2015, 110(8):2025-2040. doi: 10.2113/econgeo.110.8.2025

    [23]

    保增宽, 袁万明, 王世成, 等.磷灰石 (U-Th)/He定年技术及应用简介[J].岩石矿物学杂志, 2005, 24(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200502005.htm

    Bao Z K, Yuan W M, Wang S C, et al.Apatite (U-Th)/He dating and its application[J].Acta Petrologica et Mineralogica, 2005, 24(2):126-132. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200502005.htm

    [24]

    陈文, 何学贤, 张彦, 等.金属矿床年龄测定新技术--(U-Th)/He同位素定年方法[J].矿床地质, 2010, 29(增刊):821-822. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1412.htm

    Chen W, He X X, Zhang Y, et al.A new dating technique for metallic mineral deposit-(U-Th)/He isotopic dating[J].Mineral Deposits, 2010, 29(Supplement):821-822. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1412.htm

    [25]

    蒋毅, 常宏.磷灰石 (U-Th)/He定年方法综述[J].岩石矿物学杂志, 2012, 31(5):757-766.

    Jiang Y, Chang H.Apatite (U-Th)/He dating:A review[J].Acta Petrologica et Mineralogica, 2012, 31(5):757-766.

    [26]

    Evans N J, Byrne J, Keegan J, et al.Determination of uranium and thorium in zircon, apatite, and fluorite:Application to laser (U-Th)/He thermochronology[J].Journal of Analytical Chemistry, 2005, 60(12):1159-1165. doi: 10.1007/s10809-005-0260-1

    [27]

    Boyce J W, Hodges K V, Olszewski W J, et al.Laser microprobe (U-Th)/He geochronology[J].Geochimica et Cosmochimica Acta, 2006, 70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019

    [28]

    Boyce J W, Hodges K V, King D, et al.Improved confidence in (U-Th)/He thermochronology using the laser microprobe:An example from a Pleistocene leucogranite, Nanga Parbat, Pakistan[J].Geochemistry Geophysics Geosystems, 2009, 10(9):1-13.

    [29]

    van Soest M C, Monteleone B D, Boyce J W, et al.Advances in laser microprobe (U-Th)/He geochronology[R].American Geophysical Union (Fall Meeting), 2008.

    [30]

    Tripathy-Lang A, Monteleone B D, van Soest M C, et al.In situ detrital zircon (U-Th)/He thermochronology[R].American Geophysical Union (Fall Meeting), 2010.

    [31]

    Tripathy-Lang A, Hodges K V, Monteleone B D, et al.Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments[J].Journal of Geophysical Research:Earth Surface, 2013, 118(3):1333-1341. doi: 10.1002/jgrf.20091

    [32]

    Vermeesch P, Sherlock S C, Roberts N M W, et al.A simple method for in-situ U-Th-He dating[J].Geochimica et Cosmochimica Acta, 2012, 79:140-147. doi: 10.1016/j.gca.2011.11.042

    [33]

    Evans N J, McInnes B I A, McDonald B, et al.An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J].Journal of Analytical Atomic Spectrometry, 2015, 30:1636-1645. doi: 10.1039/C5JA00085H

    [34]

    Horne A M, van Soest M C, Hodges K V, et al.Integrated single crystal ablation U/Pb and (U-Th)/He dating of detrital accessory minerals-proof-of-concept studies of titanites and zircons from the Fish Canyon Tuff[J].Geochimica et Cosmochimica Acta, 2016, 178:106-123. doi: 10.1016/j.gca.2015.11.044

    [35]

    Farley K A.(U-Th)/He dating:Techniques, calibrations, and applications[J].Reviews in Mineralogy and Geochemistry, 2002, 47(1):819-844. doi: 10.2138/rmg.2002.47.18

    [36]

    吴堑红, 刘厚昌.(U-Th)/He定年--低温热年代学研究的一种新技术[J].地球科学进展, 2002, 17(1):126-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201019.htm

    Wu Q H, Liu H C.(U-Th)/He dating-A new method of low-temperature thermochronometry[J].Advance in Earth Sciences, 2002, 17(1):126-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200201019.htm

    [37]

    Boyce J W, Hodges K V.U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite:Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology[J].Chemical Geology, 2005, 219(1-4):261-274. doi: 10.1016/j.chemgeo.2005.02.007

    [38]

    Dobson K J, Stuart F M, Dempster T J, et al.U and Th zonation in Fish Canyon Tuff zircons:Implications for a zircon (U-Th)/He standard[J].Geochimica et Cosmochimica Acta, 2008, 72(19):4745-4755. doi: 10.1016/j.gca.2008.07.015

    [39]

    Ault A K, Flowers R M.Is apatite U-Th zonation information necessary for accurate interpretation of apatite (U-Th)/He thermochronometry data[J].Geochimica et Cosmochimica Acta, 2011, 79:60-78.

    [40]

    Farley K A, Shuster D L, Ketcham R A.U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J].Geochimica et Cosmochimica Acta, 2011, 75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020

    [41]

    Hourigan J K, Reiners P W, Brandon M T.U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry[J].Geochimica et Cosmochimica Acta, 2005, 69(13):3349-3365. doi: 10.1016/j.gca.2005.01.024

    [42]

    Farley K A, Wolf R A, Fallick A E.The effects of long alpha-stopping distances on (U-Th)/He ages[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7

    [43]

    Ketcham R A, Gautheron C, Tassan-Got L.Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology:Refinement of the baseline case[J].Geochimica et Cosmochimica Acta, 2011, 75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011

    [44]

    Gautheron C, Tassan-Got L, Ketcham R R A, et al.Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology:3D modeling of diffusion, zoning, implantation, and abrasion[J].Geochimica et Cosmochimica Acta, 2012, 96:44-56. doi: 10.1016/j.gca.2012.08.016

    [45]

    Meesters A G C A, Dunai T J.Solving the production-diffusion equation for finite diffusion domains of various shapes Part Ⅱ.Application to cases with α-ejection and nonhomogeneous distribution of the source[J].Chemical Geology, 2002, 186(3-4):57-73. https://www.researchgate.net/publication/223572432_Solving_the_production-diffusion_equation_for_finite_diffusion_domains_of_various_shapes_Part_II_Application_to_cases_with_a-ejection_and_nonhomogeneous_distribution_of_the_source

    [46]

    Bargnesi E A, Stockli D F, Hourigan J K, et al.Improved accuracy of zircon (U-Th)/He ages by rectifying parent nuclide zonation with practical methods[J].Chemical Geology, 2016, 426:158-169. doi: 10.1016/j.chemgeo.2016.01.017

    [47]

    Zeitler P K, Herczeg A L, McDougall I, et al.U-Th-He dating of apatite-A potential thermochronometer[J].Geochimica et Cosmochimica Acta, 1987, 51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5

    [48]

    Lippolt H J, Leitz M, Wernicke R S, et al.(Uranium+thorium)/helium dating of apatite:Experience with samples from different geochemical environments[J].Chemical Geology, 1994, 112(1-2):179-191. doi: 10.1016/0009-2541(94)90113-9

    [49]

    Wolf R A, Farley K A, Silver L T.Helium diffusion and low-temperature thermochronometry of apatite[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5

    [50]

    House M A, Farley K A, Stockli D F.Helium chronometry of apatite and titanite using Nd-YAG laser heating[J].Earth and Planetary Science Letters, 2000, 183(3-4):365-368. doi: 10.1016/S0012-821X(00)00286-7

    [51]

    Foeken J P, Stuart F M, Dobson K J, et al.A diode laser system for heating minerals for (U-Th)/He chronometry[J].Geochemistry, Geophysics, Geosystems, 2006, 7(4):1-9.

    [52]

    Kelly S P, Cherniak D J, Farley K A, et al.Testing the limits to high spatial resolution laser analysis of noble gases in natural and experimental samples[J].Goldschmidt Conference Abstracts, 2009:A636.

    [53]

    Reiners P W.Zircon (U-Th)/He thermochronometry[J].Reviews in Mineralogy and Geochemistry, 2005, 58(1):151-179. doi: 10.2138/rmg.2005.58.6

    [54]

    Stockli D F, Farley K A.Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole[J].Chemical Geology, 2004, 207(3-4):223-236. doi: 10.1016/j.chemgeo.2004.03.002

    [55]

    Aciego A, Kennedy B M, DePaolo D J, et al.U-Th/He age of phenocrystic garnet from the 79AD eruption of Mt.Vesuvius[J].Earth and Planetary Sciences Letters, 2003, 219(1-2):209-219.

    [56]

    Farley K A, Stockli D F.(U-Th)/He dating of phosphates:Apatite, monazite, and xenotime[J].Reviews in Mineralogy and Geochemistry, 2002, 48(1):559-577. doi: 10.2138/rmg.2002.48.15

    [57]

    Min K, Farley K A, Renne P R, et al.Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history[J].Earth and Planetary Science Letters, 2003, 209(3-4):323-336. doi: 10.1016/S0012-821X(03)00080-3

    [58]

    Min K, Reiners P W, Shuster D L.(U-Th)/He ages of phosphates from St.S verin LL6 chondrite[J].Geochimica et Cosmochimica Acta, 2013, 100:282-296. doi: 10.1016/j.gca.2012.09.042

    [59]

    Boyce J W, Hodges K V, Olszewski W J, et al.He diffusion in monazite:Implications for (U-Th)/He thermochronometry[J].Geochemistry, Geophysics, Geosystems, 2005, 6(12):1-12.

    [60]

    Evans N J, Wilson N S F, Cline J S, et al.Fluorite (U-Th)/He thermochronology:Constraints on the low temperature history of Yucca Mountain, Nevada[J].Applied Geochemistry, 2005, 20(6):1099-1105. doi: 10.1016/j.apgeochem.2005.02.008

    [61]

    Copeland P, Watson E B, Urizar S C, et al.Alpha thermochronology of carbonates[J].Geochimica et Cosmochimica Acta, 2007, 71(18):4488-4511. doi: 10.1016/j.gca.2007.07.004

    [62]

    Cros A, Gautheron C, Pagel M, et al.4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J].Geochimica et Cosmochimica Acta, 2014, 125:414-432. doi: 10.1016/j.gca.2013.09.038

    [63]

    Stockli D F, Wolfe M R, Blackburn T J, et al.He diffusion and (U-Th)/He thermochronometry of rutile[J].American Geophysical Union Fall Meeting, 2007:1548.

    [64]

    Meinhold G.Rutile and its applications in earth sciences[J].Earth-Science Reviews, 2010, 102(1-2):1-28. doi: 10.1016/j.earscirev.2010.06.001

    [65]

    Shuster D L, Vasconcelos P M, Heim J A, et al.Weathering geochronology by U-Th/He dating of goethite[J].Geochimica et Cosmochimica Acta, 2005, 69(3):659-673. doi: 10.1016/j.gca.2004.07.028

    [66]

    Wernicke R S, Lippolt H J.(U-Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany[J].Chemical Geology, 1997, 138(3-4):273-285. doi: 10.1016/S0009-2541(97)00020-X

    [67]

    Shukolyukov Y A, Yakubovich O V, Rytsk Y A.About possibility of isotope dating of native gold by the (U-Th)/He method[J].Doklady Earth Sciences, 2010, 430(1):90-94. doi: 10.1134/S1028334X10010204

    [68]

    Yakubovich O V, Shukolyukov Y A, Kotov A B, et al.U-Th-He dating of native gold:First results, problems and outlooks[J].Petrology, 2014, 22(5):429-437. doi: 10.1134/S0869591114050075

    [69]

    LeHarzic R, Valette S, Huot N, et al.TEM Investigations of Thermal Effects on Material Structure Induced by Femtosecond and Nanosecond Laser Processing[C]//Sugioka K, Gower M C, Haglund R F, et al.Photon Processing in Microelectronics and Photonics:Proceedings of SPIE, Vol.4637.Bellingham, 2002:148-158.

    [70]

    Yao Y L, Chen H Q, Zhang W W.Time scale effects in laser material removal:A review[J].International Journal of Advanced Manufacturing Technology, 2005, 26(5):598-608.

    [71]

    van Soest M C, Monteleone B D, Boyce J W, et al.Laser depth profiling studies of helium diffusion in Durango fluorapatite[J].Geochimica et Cosmochimica Acta, 2011, 75(9):2409-2419. doi: 10.1016/j.gca.2011.02.008

    [72]

    Liu W L, Xia H R, Wang X Q, et al.Characterization of deuterated potassium dihydrogen phosphate single crystals grown by circulating method[J].Journal of Crystal Growth, 2006, 293(2):387-393. doi: 10.1016/j.jcrysgro.2006.05.040

    [73]

    Santos E A F, Silva W F, de Araújo M T, et al.Quantum efficiencies and thermo-optical properties of Er3+-, Nd3+-, and P3+-single doped lead-indium-phosphate glasses[J].Journal of Applied Physics, 2009, 106:1-6.

    [74]

    Hodapp T W, Fleming P R.Modeling topology formation during laser ablation[J].Journal of Applied Physics, 1998, 84(1):577-583. doi: 10.1063/1.368063

    [75]

    Usoskin A, Freyhardt H C, Krebs H U.Influence of light scattering on the development of laser-induced ridge-cone structures on target surfaces[J].Applied Physics A:Materials Science & Processing, 1999, 69:S823-S826.

    [76]

    Woodhead J, Hergt J, Meffre S, et al.In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS[J].Chemical Geology, 2009, 262(3-4):344-354. doi: 10.1016/j.chemgeo.2009.02.003

    [77]

    Wolf R A, Farley K A, Kass D M.Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer[J].Chemical Geology, 1998, 148(1-2):105-114. doi: 10.1016/S0009-2541(98)00024-2

    [78]

    Reiners P W, Spell T L, Nicolescu S, et al.Zircon (U-Th)/He thermochronometry:He diffusion and comparisons with 40Ar/39Ar dating[J].Geochimica et Cosmochimica Acta, 2004, 68(8):1857-1887. doi: 10.1016/j.gca.2003.10.021

    [79]

    Siebel W, Hann H P, Danisik M, et al.Age constraints on faulting and fault reactivation:A multi-chronological approach[J].International Journal of Earth Science, 2010, 99(6):1187-1197. doi: 10.1007/s00531-009-0474-9

    [80]

    Crowhurst P, Farley K A, Ryan C, et al.Potential of rutile as a U-Th-He thermochronometer[J].Geochimica et Cosmochimica Acta, 2002(Supplement 1), 66:A158.

    [81]

    Stockli D F, Farley K A, Walker J D, et al.Helium diffusion and (U-Th)/He thermochronometry of monazite and rutile[J].Geochimica et Cosmochimica Acta, 2005, 69(10):A8.

    [82]

    Wolfe M R, Stockli D F, Shuster D L, et al.Assessment of the rutile (U-Th)/He thermochronometry on the KTB drill hole, Germany[R].American Geophysical Union (Fall Meeting), 2007.

    [83]

    Peterman E M, Hourigan J K, Grove M.Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry:Catnip Sill, Catalina core complex, Tucson, AZ[J].Earth and Planetary Science Letters, 2014, 403:48-55. doi: 10.1016/j.epsl.2014.06.020

    [84]

    McInnes B I A, Evans N J, Fu F Q, et al.Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits[M]//Porter T M.Super Porphyry Copper & Gold Deposits:A Global Perspective.Adelaide:PGC Publishing, 2005:1-16.

    [85]

    McInnes B I A, Evans N J, Fu F Q, et al.Application of thermochronology to hydrothermal ore deposits[J].Reviews in Mineralogy and Geochemistry, 2005, 58(1):467-498. doi: 10.2138/rmg.2005.58.18

    [86]

    Harris A, Dunlap W J, Reiners P W, et al.Multimillion year thermal history of a porphyry copper deposit:Application of U-Pb, 40Ar/39Ar and (U-Th)/He chrono-meters, Bajo de la Alumbrera copper-gold deposit, Argentina[J].Mineralium Deposita, 2008, 43(3):295-314. doi: 10.1007/s00126-007-0151-5

    [87]

    Betsi T B, Lentz D, McInnes B I A, et al.Emplacement ages and exhumation rates for intrusion-hosted Cu-Mo-Sb-Au mineral systems at Freegold Mountain (Yukon, Canada):Assessment from U-Pb, Ar-Ar, and (U-Th)/He geochronometer[J].Canada Journal of Earth Sciences, 2012, 49(5):653-670. doi: 10.1139/e2012-009

    [88]

    Li G M, Cao M J, Qin K Z, et al.Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating[J].Journal of Asian Earth Sciences, 2014, 79(Part B):741-758.

    [89]

    Li J X, Qin K Z, Li G M, et al.Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet:Insights from U-Pb and U-Th/He dating, and zircon Hf isotopes and trace element analysis[J].Mineralogy and Petrology, 2012, 105(3):201-221.

    [90]

    Liu X, Fan H R, Evans N J, et al.Cooling and exhumation of the mid-Jurassic porphyry copper systems in Dexing City, SE China:Insights from geo-and thermochronology[J].Mineralium Deposita, 2014, 49(7):809-819. doi: 10.1007/s00126-014-0536-1

    [91]

    Arehart G B, Chakurian A M, Tertbar D R, et al.Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, Western North America, and implications for deposit genesis[J].Economic Geology, 2003, 98(2):235-248.

    [92]

    Zeng Q T, Evans N J, McInnes B I A, et al.Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China[J].Mineralium Deposita, 2013, 48(3):397-412. doi: 10.1007/s00126-012-0433-4

    [93]

    Eugster O, Hofmann B, Krahenbuhl U, et al.Noble gases in alpine gold:U/Th-He dating and excesses of radiogenic He and Ar[J].Meteoritics, 1992, 27(3):219-220.

    [94]

    Eugster O, Niedermann S, Thalmann C, et al.Noble gases, K, U, Th, and Pb in native gold[J]. Journal of Geophysical Research, 1995, 100(B12):24677-24689. doi: 10.1029/95JB02843

    [95]

    Niedermann S, Eugster O, Frei R, et al.Formation of alpine Au~30Ma ago:Further results of the develop-ment of a dating method for native Au[J].Meteoritics, 1993, 28(3):411-412.

    [96]

    Pettke T, Frei R, Kramers J D, et al.Isotope systematics in vein gold from Brusson, Vald'Ayas (NW Italy):2.(U+Th)/He and K/Ar in native Au and its fluid inclusions[J].Chemical Geology, 1997, 135(3-4):173-187. doi: 10.1016/S0009-2541(96)00114-3

    [97]

    Shukolyukov Y A, Yakubovich O V, Yakovleva S Z, et al.Geothermochronology based on noble gases:Ⅲ.Migration of radiogenic He in the crystal structure of native metals with applications to their isotopic dating[J].Petrology, 2012, 20(1):1-20. doi: 10.1134/S0869591112010043

    [98]

    Heim J A, Vasconcelos P M, Shuster D L, et al.Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley Province, Australia[J].Geology, 2006, 34(3):173-176. doi: 10.1130/G22003.1

    [99]

    Farley K A, Flowers R M.(U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from Eastern Grand Canyon[J].Earth and Planetary Science Letters, 2012, 359-360:131-140. doi: 10.1016/j.epsl.2012.10.010

    [100]

    Danisik M, Evans N J, Ramanaidou E R, et al.(U-Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia[J].Chemical Geology, 2013, 354:150-162. doi: 10.1016/j.chemgeo.2013.06.012

    [101]

    Burnard P G, Polya D A.Importance of mantle derived fluids during granite associated hydrothermal circulation:He and Ar isotopes of ore minerals from Panasqueira[J].Geochimica et Cosmochimica Acta, 2004, 68(7):1607-1615. doi: 10.1016/j.gca.2003.10.008

    [102]

    Jean-Baptiste P H, Fouquet Y.Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N[J].Geochimica et Cosmochimica Acta, 1996, 60(1):87-93. doi: 10.1016/0016-7037(95)00357-6

  • 加载中

(3)

计量
  • 文章访问数:  2849
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2016-09-23
修回日期:  2016-12-13
录用日期:  2017-01-12

目录