中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤中特异性微生物与重金属相互作用机制与应用研究进展

曾远, 罗立强. 土壤中特异性微生物与重金属相互作用机制与应用研究进展[J]. 岩矿测试, 2017, 36(3): 209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009
引用本文: 曾远, 罗立强. 土壤中特异性微生物与重金属相互作用机制与应用研究进展[J]. 岩矿测试, 2017, 36(3): 209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009
Yuan ZENG, Li-qiang LUO. Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009
Citation: Yuan ZENG, Li-qiang LUO. Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009

土壤中特异性微生物与重金属相互作用机制与应用研究进展

  • 基金项目:
    国家重点研发计划项目(2016YFC0600603);国家自然科学基金青年科学基金项目(41201527);国家自然科学基金项目(20775018);国家高新技术研究发展计划(863计划)项目(2007AA06Z124);中国地质调查局地质调查二级项目(DD20160340)
详细信息
    作者简介: 曾远, 博士研究生, 研究方向为生物地球化学。E-mail:zzengyuan@126.com
    通讯作者: 罗立强, 博士, 研究员, 主要从事生物地球化学、仪器分析研究。E-mail:luoliqiang@cags.ac.cn
  • 中图分类号: X825

Research Progress on the Application and Interaction Mechanism between Specific Microorganisms and Heavy Metals in Soil

More Information
  • 随着经济的发展,矿产资源的开采和利用程度越来越高,一方面发现有地表露头矿床的几率越来越小,另一方面其造成的重金属污染严重危害环境和人类健康。自然界中的微生物与扩散到环境中的重金属会产生相互作用,具有这种特异性的细菌既可应用于指示隐伏金属矿床,亦可应用于重金属污染生物修复。本文从特异性微生物与重金属相互作用微观机制、微生物找矿、重金属污染土壤的微生物修复三个方面,对其研究现状和进展进行了评述,重点对特异性微生物与重金属离子发生的吸附、累积与转化过程,微生物改变重金属元素分布、赋存状态和毒性作用机理,蜡样芽孢杆菌(Bacillus cereus)与金的作用机制及其在寻找隐伏金矿的应用潜力,特异性微生物通过代谢产物吸附去除土壤中重金属元素及其辅助植物修复重金属污染等方面进行了介绍和阐述。
  • 加载中
  • 图 1  特异性微生物与重金属离子的作用过程

    Figure 1. 

    表 1  特异性微生物增强重金属的植物修复研究实例

    Table 1.  Specific microorganism enhanced phytoremediation of metal contaminated soil

    特异性微生物 植物 重金属 影响机制 文献
    假单孢菌(AGB-1) 芒草(Miscanthus sinensis) As、Cd、Cu、Pb、Zn 通过增加植物生物量、叶绿素、蛋白质、超氧化物歧化酶和过氧化氢酶的活性增加重金属的累积 [77]
    假单孢菌(Lk9) 龙葵(Solanum nigrum) Cd、Zn、Cu 改善土壤环境中Fe和P的活性,提高植物生物量及其对Cd、Zn、Cu的吸收 [78]
    假单孢菌
    (PsF84、PsF610)
    香天竺葵
    (Pelargonium graveolens)
    Cr 分泌吲哚乙酸和铁载体,增加P的活性,提高植物生物量和叶绿素的含量,促进Cr(Ⅵ)在根部的螯合 [79]
    拉恩菌属
    (JN6)
    毛蓼(Polygonum pubescens)
    和甘蓝型油菜
    (Brassica napus)
    Cd、Pb、Zn 分泌吲哚乙酸和铁载体,提高植物对高浓度Cd、Pb、Zn的耐受性并促进油菜对重金属的吸收与固定 [80]
    芽孢杆菌(E2S2、E1S2、E4S1),
    寡养单孢菌(E1L)
    景天
    (Sedum plumbizincicola)
    Cd、Pb、Zn 接种细菌后增加Cd和Zn可提取态含量,促进植物生长及其对重金属的吸收 [81]
    芽孢杆菌
    (MN3-4)
    桤木(Alnus firma)和
    甘蓝型油菜(Brassica napus)
    Pb、Cd、Zn、Ni、Cu 分泌吲哚乙酸,促进铅的生物降解及甘蓝根幼苗根的伸长,减少金属植物毒性,促进桤木对Pb积累 [82]
    微杆菌(NCr-8),
    节杆菌(NCr-1),
    芽孢杆菌(NCr-5、NCr-9)
    天蓝遏蓝菜
    (Noccaea caerulescens)、
    穿叶遏蓝菜
    (Thlaspi perfoliatum)
    Ni 增强植物的生长和重金属Ni的迁移 [83]
    沙雷氏菌
    (LRE07)
    龙葵
    (Solanum nigrum L.)
    Cd 促进植物生长,增加植物生物量及叶片中光合色素的含量 [84]
    伯克霍尔德氏菌(SaZR4),
    鞘氨醇单孢菌
    (SaMR12,Variovorax sp. SaNR1)
    东南景天
    (Sedum alfredii Hance)
    Zn、Cd SaMR12和SaNR1促进植物生长及其对Zn、Cd的吸收,SaZR4只促进Zn的吸收 [85]
    下载: 导出CSV
  • [1]

    张花香. 蜡样芽孢杆菌芽孢与金矿藏关系初探[D]: 武汉: 华中师范大学, 2006.http://cdmd.cnki.com.cn/Article/CDMD-10511-2006078474.htm

    Zhang H X.Primary Study of Relations between Bacillus Cereus Spores and Gold Mineral Resource[D].Wuhan:Central China Normal University, 2006.

    [2]

    Cobbina S, Myilla M, Michael K.Small scale gold mining and heavy metal pollution:Assessment of drinking water sources in Datuku in the Talensi-Nabdam district[J].International Journal of Scientific & Technology Research, 2013, 2(1):96-100. http://www.ijstr.org/paper-references.php?ref=IJSTR-0113-5654

    [3]

    Khan S, El-Latif H A, Qiao M, et al.Effects of Cd and Pb on soil microbial community structure and activities[J].Environmental Science and Pollution Research, 2010, 17(2):288-296. doi: 10.1007/s11356-009-0134-4

    [4]

    Zhao H, Xia B, Fan C, et al.Human health risk from soil heavy metal contamination under different land uses near Dabaoshan mine, Southern China[J].Science of the Total Environment, 2012, 417:45-54. https://www.researchgate.net/publication/221759270_Human_health_risk_from_soil_heavy_metal_contamination_under_different_land_uses_near_Dabaoshan_Mine_Southern_China

    [5]

    Fernández D, Roldán A, Azcón R, et al.Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species[J].Microbial Ecology, 2012, 63(4):794-803. doi: 10.1007/s00248-011-9972-y

    [6]

    Bolan N S, Choppala G, Kunhikrishnan A, et al.Microbial transformation of trace elements in soils in relation to bioavailability and remediation[J].Reviews of Environmental Contamination and Toxicology, 2013, 225:1-56. https://link.springer.com/content/pdf/10.1007%2F978-1-4614-6470-9_1.pdf

    [7]

    Dixit R, Wasiullah, Malaviya D, et al.Bioremediation of heavy metals from soil and aquatic environment:An overview of principles and criteria of fundamental processes[J].Sustainability, 2015, 7(2):2189-2212. doi: 10.3390/su7022189

    [8]

    Franzetti A, Gandolfi I, Fracchia L, et al.Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites[J].Biosurfactants, 2014:361-369. https://www.researchgate.net/profile/Panagiotis_Gkorezis/publication/289107394_Biosurfactant_Use_in_Heavy_Metal_Removal_from_Industrial_Effluents_and_Contaminated_Sites/links/568a3a0208ae1975839d6bfe.pdf?origin=publication_detail

    [9]

    Vangronsveld J, Herzig R, Weyens N, et al.Phytoreme-diation of contaminated soils and groundwater:Lessons from the field[J].Environmental Science and Pollution Research, 2009, 16(7):765-794. doi: 10.1007/s11356-009-0213-6

    [10]

    Sarma H.Metal hyperaccumulation in plants:A review focusing on phytoremediation technology[J].Journal of Environmental Science and Technology, 2011, 4(2):118-138. doi: 10.3923/jest.2011.118.138

    [11]

    Singh A, Prasad S M.Reduction of heavy metal load in food chain:Technology assessment[J].Reviews in Environmental Science and Bio/Technology, 2011, 10(3):199-214. doi: 10.1007/s11157-011-9241-z

    [12]

    Wuana R A, Okieimen F E.Heavy metals in contam-inated soils:A review of sources, chemistry, risks and best available strategies for remediation[J].ISRN Ecology, 2011:1-20. https://www.researchgate.net/publication/309761911_Heavy_metals_in_contaminated_soils_a_review_of_sources_chemistry_risks_and_best_available_strategies_for_remediation

    [13]

    李韵诗, 冯冲凌, 吴晓芙, 等.重金属污染土壤植物修复中的微生物功能研究进展[J].生态学报, 2015, 35(20):6881-6890. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520035.htm

    Li Y S, Feng C L, Wu X F, et al.A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils[J].Acta Ecologica Sinica, 2015, 35(20):6881-6890. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201520035.htm

    [14]

    White P J.Phytoremediation assisted by microorganisms[J].Trends in Plant Science, 2001, 6(11):502. doi: 10.1016/S1360-1385(01)02093-3

    [15]

    Griffiths B S, Philippot L.Insights into the resistance and resilience of the soil microbial community[J].FEMS Microbiology Reviews, 2013, 37(2):112-129. doi: 10.1111/j.1574-6976.2012.00343.x

    [16]

    Bartkowiak A, Lemanowicz J.Application of biochemical tests to evaluate the pollution of the Unislaw basin soils with heavy metals[J].International Journal of Environmental Research, 2014, 8(1):93-100. https://www.researchgate.net/profile/Joanna_Lemanowicz/publication/261698446_Application_of_biochemical_testes_to_evaluate_the_pollution_of_the_Unislaw_Basin_soils_with_heavy_metals/links/0a85e53501ac3d4d9b000000.pdf

    [17]

    韩桂琪, 王彬, 徐卫红, 等.重金属Cd, Zn, Cu, Pb复合污染对土壤微生物和酶活性的影响[J].水土保持学报, 2010(5):238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005050.htm

    Han G Q, Wang B, Xu W H, et al.Effects of heavy metal combined pollution on soil microbial indicators and soil enzymatic activity[J].Journal of Soil and Water Conservation, 2010(5):238-242. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201005050.htm

    [18]

    Yang J S, Yang F L, Yang Y, et al.A proposal of "core enzyme" bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis[J].Environmental Pollution, 2016, 213:760-769. doi: 10.1016/j.envpol.2016.03.030

    [19]

    Wang Q, Zhou D, Cang L, et al.Indication of soil heavy metal pollution with earthworms and soil microbial biomass carbon in the vicinity of an abandoned copper mine in Eastern Nanjing, China[J].European Journal of Soil Biology, 2009, 45(3):229-234. doi: 10.1016/j.ejsobi.2008.12.002

    [20]

    Jose J, Giridhar R, Anas A, et al.Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India[J].Environmental Pollution, 2011, 159(10):2775-2780. doi: 10.1016/j.envpol.2011.05.009

    [21]

    李小林, 颜森, 张小平, 等.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J].农业环境科学学报, 2011, 30(3):468-475. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201103012.htm

    Li X L, Yan S, Zhang X P, et al.Response of microbe quantity and actinomycetes community of heavy metal contaminated soils in lead-zinc mine[J].Journal of Agro-Environment Science, 2011, 30(3):468-475. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201103012.htm

    [22]

    孙嘉龙, 肖唐付, 邹晓, 等.黔西南滥木厂铊矿化区铊污染的微生物效应[J].地球与环境, 2009, 37(1):62-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901008.htm

    Sun J L, Xiao T F, Zou X, et al.Microbial effects induced by thallium accumulation in the Lanmuchang Tl mineralised area, Southwest Guizhou Province[J].Earth and Environment, 2009, 37(1):62-66. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200901008.htm

    [23]

    Sheng Z, Chaohai W, Chaodeng L, et al.Damage to DNA of effective microorganisms by heavy metals:Impact on wastewater treatment[J].Journal of Environmental Sciences, 2008, 20(12):1514-1518. doi: 10.1016/S1001-0742(08)62558-9

    [24]

    Zhang X, Li F, Liu T, et al.The variations in the soil enzyme activity, protein expression, microbial biomass, and community structure of soil contaminated by heavy metals[J].ISRN Soil Science, 2013:1-12. https://www.researchgate.net/profile/Xi_Zhang25/publication/259533502_The_Variations_in_the_Soil_Enzyme_Activity_Protein_Expression_Microbial_Biomass_and_Community_Structure_of_Soil_Contaminated_by_Heavy_Metals/links/0deec52c6d632a2d22000000.pdf?origin=publication_detail

    [25]

    Chodak M, Gołębiewski M, Morawska-Płoskonka J, et al.Diversity of microorganisms from forest soils differently polluted with heavy metals[J].Applied Soil Ecology, 2013, 64:7-14. doi: 10.1016/j.apsoil.2012.11.004

    [26]

    Colin V L, Villegas L B, Abate C M.Indigenous microor-ganisms as potential bioremediators for environments contaminated with heavy metals[J].International Biodeterioration & Biodegradation, 2012, 69:28-37. https://www.researchgate.net/publication/271560060_Indigenous_microorganisms_as_potential_bioremediators_for_environments_contaminated_with_heavy_metals

    [27]

    湛方栋, 何永美, 李元, 等.废弃铅锌矿区和非矿区小花南芥根际真菌的分离及其铅耐性研究[J].生态环境学报, 2010, 19(3):599-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201003021.htm

    Zhan F D, He Y M, Li Y, et al.Isolation and Pb tolerance of rhizosphere fungi of Arabis alpine in abandoned lead-zinc mining and non-mining area[J].Ecology and Environmental Sciences, 2010, 19(3):599-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201003021.htm

    [28]

    Muñoz A, Ruiz E, Abriouel H, et al.Heavy metal tolerance of microorganisms isolated from wastewaters:Identification and evaluation of its potential for biosorption[J].Chemical Engineering Journal, 2012, 210:325-332. doi: 10.1016/j.cej.2012.09.007

    [29]

    Shoeb E, Badar U, Akhter J, et al.Horizontal gene transfer of stress resistance genes through plasmid transport[J].World Journal of Microbiology and Biotechnology, 2012, 28(3):1021-1025. doi: 10.1007/s11274-011-0900-6

    [30]

    Schwitzguébel J P, van der Lelie D, Baker A, et al.Phytoremediation:European and American trends successes, obstacles and needs[J].Journal of Soils and Sediments, 2002, 2(2):91-99. doi: 10.1007/BF02987877

    [31]

    Li P S, Tao H C.Cell surface engineering of micro-organisms towards adsorption of heavy metals[J].Critical Reviews in Microbiology, 2015, 41(2):140. doi: 10.3109/1040841X.2013.813898

    [32]

    Kemner K M, Kelly S D, Lai B, et al.Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis[J].Science, 2004, 306(5696):686-687. doi: 10.1126/science.1103524

    [33]

    He Z, Gao F, Sha T, et al.Isolation and characterization of a Cr(Ⅵ)-reduction Ochrobactrum sp.strain CSCr-3 from chromium landfill[J].Journal of Hazardous Materials, 2009, 163(2):869-873. http://www.sciencedirect.com/science/article/pii/S0304389408010704

    [34]

    Huang J H.Impact of microorganisms on arsenic biogeochemistry:A review[J].Water, Air & Soil Pollution, 2014, 225(2):1-25. https://link.springer.com/content/pdf/10.1007%2Fs11270-013-1848-y.pdf

    [35]

    白红娟, 张肇铭, 贠妮, 等.球形红细菌去除和转化铅的机理研究[J].环境科学学报, 2007, 27(4):608-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200704012.htm

    Bai H J, Zhang Z M, Yun N, et al.Studies on removal and transformation mechanism of lead by Rhodobacter sphaeroides[J].Acta Scientiae Circumstantiae, 2007, 27(4):608-614. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200704012.htm

    [36]

    Govarthanan M, Lee K J, Cho M, et al.Significance of autochthonous Bacillus sp.KK1 on biomineralization of lead in mine tailings[J].Chemosphere, 2013, 90(8):2267-2272. doi: 10.1016/j.chemosphere.2012.10.038

    [37]

    Reith F, Rogers S L.Assessment of bacterial commu-nities in auriferous and non-auriferous soils using genetic and functional fingerprinting[J].Geomicrobiology Journal, 2008, 25(3):203-215. https://www.researchgate.net/publication/248985091_Assessment_of_Bacterial_Communities_in_Auriferous_and_Non-Auriferous_Soils_Using_Genetic_and_Functional_Fingerprinting

    [38]

    Mehrnia R.Using Fractal Distribution of Geomicrobio-logical Anomalies for Prospecting Gold Mineralization Potentials in North West of Iran[C]//Proceedings of The 1st International Applied Geological Congress.Iran:Department of Geology, Islamic Azad University.2010:789-794.

    [39]

    王红梅, 杨逢清, 谢树成, 等.第四纪土壤微生物与金离子的相互作用实验:微生物找矿依据[J].海洋地质与第四纪地质, 2002, 22(4):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204016.htm

    Wang H M, Yang F Q, Xie S C, et al, Interaction between gold ion and quaternary soil microorganism:Bioexploration indication[J].Marine Geology & Quaternary Geology, 2002, 22(4):107-110. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204016.htm

    [40]

    Parduhn N L, 徐年生.矿产微生物勘探法在美国加州梅斯基特金矿区的应用效果[J].黄金地质科技, 1993(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199302012.htm

    Parduhn N L, Xu N S.Application of mineral microbial prospecting method in California gold mine[J].Gold Geology Technology, 1993(2):67-72. http://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199302012.htm

    [41]

    Reith F, Mcphail D C, Christy A G.Bacillus cereus, gold and associated elements in soil and regolith samples from Tomakin Park gold mine in South-Eastern New South Wales, Australia[J].Journal of Geochemical Exploration, 2005, 85(2):81-98. doi: 10.1016/j.gexplo.2004.11.001

    [42]

    汤显春, 谢树成.广西四川金矿床区土壤样品中蜡状芽孢杆菌的分离和鉴定[J].华中师范大学学报(自然科学版), 1999, 33(2):271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199902026.htm

    Tang X C, Xie S C.Isolation and identification of Bacillus cereus from soil samples of gold deposit in Guangxi and Sichuan[J].Journal of Centeral China Normal University (Natural Science), 1999, 33(2):271-277. http://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ199902026.htm

    [43]

    Reith F, Zammit C M, Pohrib R, et al.Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits[J].Applied and Environmental Microbiology, 2015, 81(22):7822-7832. doi: 10.1128/AEM.01856-15

    [44]

    Tokhmechi B, Mamarabadi M.Using bacillus cereus as a geo-biological marker for gold prospecting in Iran[J].International Journal of Mining & Geo-Engineering, 2012, 46(2):209-221. https://journals.ut.ac.ir/article_51328.html

    [45]

    Yang Z, Zhang Z, Chai L, et al.Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp.Z-90[J].Journal of Hazardous Materials, 2016, 301:145-152. doi: 10.1016/j.jhazmat.2015.08.047

    [46]

    Ren W X, Li P J, Geng Y, et al.Biological leaching of heavy metals from a contaminated soil by Aspergillus niger[J].Journal of Hazardous Materials, 2009, 167(1):164-169. https://www.researchgate.net/profile/Wanxia_Ren/publication/24030283_Biological_leaching_of_heavy_metals_from_a_contaminated_soil_by_Aspergillus_niger/links/573478b408aea45ee83ac4fd.pdf?origin=publication_detail

    [47]

    Li X, Wu Y, Zhang C, et al.Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron[J].Chemical Engineering Journal, 2016, 306:393-400. doi: 10.1016/j.cej.2016.07.079

    [48]

    Fosso-Kankeu E, Mulaba-Bafubiandi A, Mamba B, et al.Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms[J].Journal of Environmental Management, 2011, 92(10):2786-2793. doi: 10.1016/j.jenvman.2011.06.025

    [49]

    Murugavelh S, Mohanty K.Isolation, identification and characterization of Cr(Ⅵ) reducing bacillus cereus from chromium contaminated soil[J].Chemical Engineering Journal, 2013, 230:1-9. doi: 10.1016/j.cej.2013.06.049

    [50]

    Mohd B Z, Ali Hamood A W, Ibrahim Z, et al.Biosorption of As(Ⅲ) by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:Equilibrium and kinetic study[J].Applied Biochemistry and Biotechnology, 2013, 171(8):2247-2261. doi: 10.1007/s12010-013-0490-x

    [51]

    金羽, 曲娟娟, 李影, 等.一株耐铅细菌的分离鉴定及其吸附特性研究[J].环境科学学报, 2013, 33(8):2248-2255. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-VNFY200510001051.htm

    Jin Y, Qu J J, Li Y, et al.Isolation, identification and Pb(Ⅱ) biosorption characterization of a lead-resistant strain[J].Acta Scientiae Circumstantiae, 2013, 33(8):2248-2255. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-VNFY200510001051.htm

    [52]

    Chakravarty R, Banerjee P C.Mechanism of cadmium binding on the cell wall of an acidophilic bacterium[J].Bioresource Technology, 2012, 108:176-183. doi: 10.1016/j.biortech.2011.12.100

    [53]

    Guin & #233; V, Spadini L, Sarret G, et al.Zinc sorption to three gram-negative bacteria:Combined titration, modeling, and EXAFS study[J].Environmental Science & Technology, 2006, 40(6):1806-1813. https://www.researchgate.net/profile/Cecile_Delolme/publication/7208018_Zinc_Sorption_to_Three_Gram-Negative_Bacteria_Combined_Titration_Modeling_and_EXAFS_Study/links/02e7e51a37fb424f8c000000/Zinc-Sorption-to-Three-Gram-Negative-Bacteria-Combined-Titration-Modeling-and-EXAFS-Study.pdf

    [54]

    Comte S, Guibaud G, Baudu M.Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values[J].Journal of Hazardous Materials, 2008, 151(1):185-193. doi: 10.1016/j.jhazmat.2007.05.070

    [55]

    Kumpiene J, Bert V, Dimitriou I, et al.Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO)[J].Science of the Total Environment, 2014, 496:510-522. doi: 10.1016/j.scitotenv.2014.06.130

    [56]

    Jin H P, Bolan N, Megharaj M, et al.Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.)[J].Journal of Environmental Management, 2011, 92(4):1115-1120. doi: 10.1016/j.jenvman.2010.11.031

    [57]

    Jackson T A, Vlaar S, Nguyen N, et al.Effects of bioavailable heavy metal species, arsenic, and acid drainage from mine tailings on a microbial community sampled along a pollution gradient in a freshwater ecosystem[J].Geomicrobiology Journal, 2015, 32(8):724-750. doi: 10.1080/01490451.2014.969412

    [58]

    Braud A, Jézéquel K, Vieille E, et al.Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores[J].Water, Air, & Soil Pollution, 2006, 6(3-4):261-279. https://link.springer.com/content/pdf/10.1007%2Fs11267-005-9022-1.pdf

    [59]

    Baum C, Hrynkiewicz K, Leinweber P, et al.Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J].Journal of Plant Nutrition and Soil Science, 2006, 169(4):516-522. doi: 10.1002/(ISSN)1522-2624

    [60]

    黄艺, 陈有键, 陶澍.菌根植物根际环境对污染土壤中Cu, Zn, Pb, Cd形态的影响[J].应用生态学报, 2000, 11(3):431-434. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200003025.htm

    Huang Y, Chen Y J, Tao S.Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil[J].Chinese Journal of Applied Ecology, 2000, 11(3):431-434. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200003025.htm

    [61]

    Wu S, Luo Y, Cheung K, et al.Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil:A laboratory study[J].Environmental Pollution, 2006, 144(3):765-773. doi: 10.1016/j.envpol.2006.02.022

    [62]

    Citterio S, Prato N, Fumagalli P, et al.The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.[J].Chemosphere, 2005, 59(1):21-29. doi: 10.1016/j.chemosphere.2004.10.009

    [63]

    Christie P, Li X, Chen B.Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc[J].Plant and Soil, 2004, 261(1):209-217. https://link.springer.com/article/10.1023/B:PLSO.0000035542.79345.1b

    [64]

    Azcón R, del Carmen Perálvarez M, Biró B, et al.Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste[J].Applied Soil Ecology, 2009, 41(2):168-177. doi: 10.1016/j.apsoil.2008.10.008

    [65]

    Rajkumar M, Prasad M N V, Swaminathan S, et al.Climate change driven plant-metal-microbe interactions[J].Environment International, 2013, 53:74-86. doi: 10.1016/j.envint.2012.12.009

    [66]

    Ma Y, Prasad M, Rajkumar M, et al.Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J].Biotechnology Advances, 2011, 29(2):248-258. doi: 10.1016/j.biotechadv.2010.12.001

    [67]

    López M L, Peralta-Videa J R, Benitez T, et al.Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter[J].Chemosphere, 2005, 61(4):595-598. doi: 10.1016/j.chemosphere.2005.02.028

    [68]

    Sun L N, Zhang Y F, He L Y, et al.Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland[J].Bioresource Technology, 2010, 101(2):501-509. doi: 10.1016/j.biortech.2009.08.011

    [69]

    Chen Y X, Wang Y P, Lin Q, et al.Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J].Environment International, 2005, 31(6):861-866. doi: 10.1016/j.envint.2005.05.044

    [70]

    Abou-Shanab R, Ghanem K, Ghanem N, et al.The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils[J].World Journal of Microbiology and Biotechnology, 2008, 24(2):253-262. doi: 10.1007/s11274-007-9464-x

    [71]

    Azcón R, del Carmen Perálvarez M, Roldán A, et al.Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants[J].Microbial Ecology, 2010, 59(4):668-677. doi: 10.1007/s00248-009-9618-5

    [72]

    Sheng X F, Xia J J, Jiang C Y, et al.Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution, 2008, 156(3):1164-1170. doi: 10.1016/j.envpol.2008.04.007

    [73]

    Sheng X, He L, Wang Q, et al.Effects of inoculation of biosurfactant-producing Bacillus sp.J119 on plant growth and cadmium uptake in a cadmium-amended soil[J].Journal of Hazardous Materials, 2008, 155(1):17-22. https://www.researchgate.net/publication/263140199_Inoculation_of_Soil_with_Cadmium-Resistant_Bacteria_Enhances_Cadmium_Phytoextraction_by_Vetiveria_nemoralis_and_Ocimum_gratissimum

    [74]

    Jiang C Y, Sheng X F, Qian M, et al.Isolation and characterization of a heavy metal-resistant Burkholderia sp.from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J].Chemosphere, 2008, 72(2):157-164. doi: 10.1016/j.chemosphere.2008.02.006

    [75]

    Jankong P, Visoottiviseth P.Effects of arbuscular mycor-rhizal inoculation on plants growing on arsenic contaminated soil[J].Chemosphere, 2008, 72(7):1092-1097. doi: 10.1016/j.chemosphere.2008.03.040

    [76]

    Ike A, Sriprang R, Ono H, et al.Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J].Chemosphere, 2007, 66(9):1670-1676. doi: 10.1016/j.chemosphere.2006.07.058

    [77]

    Babu A G, Shea P J, Sudhakar D, et al.Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil[J].Journal of Environmental Management, 2015, 151:160-166. doi: 10.1016/j.jenvman.2014.12.045

    [78]

    Chen L, Luo S, Li X, et al.Interaction of Cd-hyper-accumulator Solanum nigrum L.and functional endophyte Pseudomonas sp.Lk9 on soil heavy metals uptake[J].Soil Biology & Biochemistry, 2014, 68(1):300-308. http://www.sciencedirect.com/science/article/pii/S0038071713003659

    [79]

    Dharni S, Srivastava A K, Samad A, et al.Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv.bourbon) grown on tannery sludge amended soil[J].Chemosphere, 2014, 117:433-439. doi: 10.1016/j.chemosphere.2014.08.001

    [80]

    He H, Ye Z, Yang D, et al.Characterization of endophytic Rahnella sp.JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J].Chemosphere, 2013, 90(6):1960-1965. doi: 10.1016/j.chemosphere.2012.10.057

    [81]

    Ma Y, Oliveira R S, Nai F, et al.The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J].Journal of Environmental Management, 2015, 156:62-69. doi: 10.1016/j.jenvman.2015.03.024

    [82]

    Shin M N, Shim J, You Y, et al.Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma[J].Journal of Hazardous Materials, 2012, 199:314-320. http://www.sciencedirect.com/science/article/pii/S0304389411013604

    [83]

    Visioli G, D'Egidio S, Vamerali T, et al.Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens[J].Chemosphere, 2014, 117:538-544. doi: 10.1016/j.chemosphere.2014.09.014

    [84]

    Wan Y, Luo S, Chen J, et al.Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L.[J].Chemosphere, 2012, 89(6):743-750. doi: 10.1016/j.chemosphere.2012.07.005

    [85]

    Zhang X, Lin L, Zhu Z, et al.Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii[J].International Journal of Phytoremediation, 2013, 15(1):51-64. doi: 10.1080/15226514.2012.670315

  • 加载中

(1)

(1)

计量
  • 文章访问数:  2130
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2017-01-17
修回日期:  2017-03-20
录用日期:  2017-05-21

目录