Determination of 18 Minor Elements in the Structural Superimposed Halo Samples from Gold Deposits by Wavelength Dispersive X-ray Fluorescence Spectrometry with Pressed-powder Pellets
-
摘要: 金矿床型构造叠加晕样品中的砷锑铋银锡钨等金属元素含量对金矿多期次多阶段成矿具有指示意义。此类样品采集于金矿中,样品各元素含量范围大,从克吨级至百分之几,分布也不均匀。采用常规的检测方法分析时,存在元素间干扰不易消除、记忆效应严重等问题。本文建立了粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中砷锑铋等18种次量元素的定量分析方法。通过研究角度扫描图,选择了干扰少、强度高的分析线;充分混匀样品,消除了偏析效应;选用与样品基体类似的国家标准样品建立工作曲线,通过数学校正和内标法校正了谱线重叠干扰和基体效应。方法检出限为0.14~2.23 μg/g,精密度(RSD,n=12)小于4%。本方法可快速、准确地测定金矿床型构造叠加晕样品中各元素的含量。Abstract:
BACKGROUND Elements As, Sb, Bi, Ag, Sn, W, Mo, Cu, Pb, Zn, Co, Cr, Ni, Ti, V, Mn, Sr and Ba in structural superimposed halo samples of gold deposits were of significance to the multi-phases and multi-stage mineralization of the gold deposits. This kind of sample is collected in the gold mine. The content of each element is very different and the distribution is uneven, from the ppm level to a few percent. OBJECTIVES To overcome the problems of conventional detection methods, such as difficult to eliminate inter-element interference and serious memory effects. METHODS The contents of 18 elements in structural superimposed haloes of gold ore were studied by pressed-powder pellets Wavelength Dispersive XRF. RESULTS By studying the angle scanning chart, the analysis line with least interference and high intensity is selected, and the segregation effect is eliminated by fully mixing the sample. The detection limits of this method are 0.14-2.23 μg/g, and the precision (RSD, n=12) is less than 4%. CONCLUSIONS The method can rapidly and accurately determine the contents of all elements in structural superimposed halo samples of gold deposits. -
表 1 仪器测量条件
Table 1. Measurement conditions of elements by XRF instrument
分析线 晶体 检测器 准直器 滤光片 PHD(%) 电压
(kV)电流
(mA)2θ(°) 仪器背景(°) 阈值 窗口 低端 高端 Ag Kα1, 2 LiF200 SC 0.4 Cu 0.27 40 103 50 50 16.065 -0.645 0.403 As Kβ1, 3 LiF200 SC 0.4 None 40 104 50 50 30.451 -0.450 0.440 Ba Lβ1 LiF200 FPC 0.4 Al 0.50 30 120 50 50 79.255 -0.740 1.190 Bi Lα1 LiF220 SC 0.4 None 40 110 50 50 47.361 -0.300 0.500 Co Kα1 LiF200 FPC 0.4 None 30 120 50 50 77.827 -0.600 0.600 Cr Kα1, 2 LiF200 FPC 0.4 None 30 120 50 50 69.354 -0.800 0.950 Cu Kα1, 2 LiF200 SC 0.4 None 40 120 50 50 45.027 -0.723 0.838 Mn Kα1, 2 LiF200 FPC 0.4 None 30 120 50 50 62.973 -0.890 0.950 Mo Kα1, 2 LiF200 SC 0.4 None 59 86 50 50 20.332 -0.346 0.500 Ni Kα1, 2 LiF200 SC 0.4 None 40 115 50 50 48.667 -0.445 0.654 Pb Lβ1 LiF200 SC 0.4 None 40 120 50 50 28.242 -0.745 0.560 Rh Kαcom LiF200 SC 0.4 Cu 0.27 40 100 50 50 26.073 0 1.700 Sb Lβ1 LiF200 FPC 1.00 None 55 90 30 80 106.426 -1.395 1.750 Sn Lα1 LiF200 FPC 1.00 None 55 90 30 80 126.765 0 2 Sr Kα1 LiF220 SC 0.4 None 40 120 50 50 35.831 -0.677 0.725 Ti Kα1, 2 LiF200 FPC 0.4 None 55 120 50 50 86.137 -0.856 0.809 V Kα1 LiF220 FPC 0.4 None 60 85 50 50 123.058 -0.850 0 W Lα1 LiF200 SC 0.4 None 40 120 50 50 43.018 -0.621 0.872 Zn Kα1, 2 LiF200 SC 0.4 None 40 120 50 50 41.799 -0.546 0.680 表 2 分析元素的测量范围
Table 2. Measurement ranges of the elements
分析元素 测量范围(μg/g) Ag 1.00~1010 As 5.00~2800 Ba 10.0~1200 Bi 3.00~140 Co 1.00~100 Cr 3.00~500 Cu 3.00~28000 Mn 20.0~10000 Mo 3.00~2200 Ni 2.00~150 Pb 5.00~21700 Sb 2.00~1400 Sn 3.00~400 Sr 5.00~1100 Ti 50.0~14200 W 3.00~518 Zn 10.0~42600 V 5.00~300 表 3 XRF与其他测定方法比对
Table 3. Comparison of analytical results with XRF and others analytical methods
元素 Y41 Y42 Y43 Y44 本方法
(μg/g)常规方法
(μg/g)相对偏差
(%)本方法
(μg/g)常规方法
(μg/g)相对偏差
(%)本方法
(μg/g)常规方法
(μg/g)相对偏差
(%)本方法
(μg/g)常规方法
(μg/g)相对偏差
(%)Ag 44.1 39.2 5.9 50.2 48.1 2.1 14.4 13.8 2.1 12.4 12.7 -1.20 As 17.8 20.4 -6.8 8.18 9.61 -8.0 12.7 14.3 -5.9 6.78 7.12 -2.45 Ba 546 564 -1.6 645 682 -2.8 712 697 1.1 3321 3301 0.30 Bi 9.21 10.2 -5.1 12.8 13.6 -3.0 8.28 9.82 -8.5 5.34 5.77 -3.87 Co 24.9 26 -2.2 17.6 19.1 -4.1 9.76 10.6 -4.1 6.29 6.19 0.80 Cr 123 118 2.1 99.4 107 -3.7 108 102 2.9 11.4 11.7 -1.30 Cu 38066 38243 -0.2 1811 1872 -1.7 428 416 1.4 2170 2155 0.35 Mn 675 708 -2.4 1231 1264 -1.3 553 586 -2.9 412 419 -0.84 Mo 48.2 46.1 2.2 68.4 62.4 4.6 51.5 54.4 -2.7 12.4 11.8 2.48 Ni 132 126 2.3 13.8 14.6 -2.8 18.9 21.4 -6.2 874 856 1.04 Pb 16405 16672 -0.8 16494 16129 1.1 200 214 -3.4 385 379 0.79 Sb 212 197 3.7 39.9 42.1 -2.7 25.2 23.7 3.1 6.21 6.41 -1.58 Sn 28.2 26.5 3.1 13.3 14.9 -5.7 17.8 15.3 7.6 14.8 15.1 -1.00 Sr 129 121 3.2 124 118 2.5 214 207 1.7 77.5 78.1 -0.39 Ti 2316 2386 -1.5 346 361 -2.1 1286 1264 0.9 964 956 0.42 W 750 723 1.8 116 128 -4.9 140 131 3.3 25.6 26.1 -0.97 Zn 1079 1120 -1.9 35.6 36.4 -1.1 54.7 56.9 -2.0 521 534 -1.23 V 157 148 3.0 25.0 26.0 -2.0 25.7 27.0 -2.5 64.1 64.6 -0.39 注:相对偏差=(本方法分析结果-两方法分析结果平均值)/两方法分析结果平均值×100。 表 4 方法精密度
Table 4. Precision tests of the method
元素 GBW07311 GBW07405 测量平均值
(μg/g)RSD
(%)测量平均值
(μg/g)RSD
(%)Ag 3.50 2.06 4.54 3.46 As 258 1.75 423 0.71 Ba 265 1.15 304 0.50 Bi 52.4 1.62 42.9 0.94 Co 8.19 0.75 13.6 1.47 Cr 45.9 1.28 113 1.02 Cu 82.0 0.46 150 2.67 Mn 2513 0.17 1370 0.37 Mo 6.10 1.83 4.73 1.64 Ni 15.0 2.15 42.8 0.71 Pb 631 0.42 553 1.45 Sb 15.5 1.98 37.1 1.48 Sn 384 1.04 18.8 1.92 Sr 32.9 1.32 43.0 1.81 Ti 2127 0.24 6338 0.39 W 134 2.29 35.2 1.15 Zn 374 1.74 504 0.72 V 52.6 3.67 165 1.86 表 5 方法检出限
Table 5. Detection limits of the method
分析元素 检出限(μg/g) Ag 0.21 As 0.82 Ba 2.23 Bi 0.51 Co 0.18 Cr 0.46 Cu 0.18 Mn 0.34 Mo 0.47 Ni 0.14 Pb 0.66 Sb 0.19 Sn 0.24 Sr 0.63 Ti 1.21 W 0.43 Zn 0.15 V 0.81 -
[1] 李惠, 张国义, 禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M].北京:地质出版社, 2006:27.
Li H, Zhang G Y, Yu B.Structural Superposition Halo Model and Ore Finding Effect in the Prediction of Deep Blind Ore Deposits in Gold Deposits[M].Beijing:Geological Publishing House, 2006:27.
[2] 李惠, 禹斌, 李德亮.构造叠加晕找盲矿法及找矿效果[M].北京:地质出版社, 2008:14-20.
Li H, Yu B, Li D L.Blind Ore Prospecting Method with Structural Superposition Halo and Its Ore Finding Effect[M].Beijing:Geological Publishing House, 2008:14-20.
[3] 李惠, 禹斌, 李德亮, 等.构造叠加晕法预测盲矿的关键技术[J].物探与化探, 2014, 38(2):189-193. http://d.old.wanfangdata.com.cn/Periodical/wtyht201402001
Li H, Yu B, Li D L, et al.The key technology of predicting blind ore by structural superposition halo method[J].Geophysical and Geochemical Exploration, 2014, 38(2):189-193. http://d.old.wanfangdata.com.cn/Periodical/wtyht201402001
[4] 李惠, 禹斌, 李德亮, 等.成矿区带构造叠加晕找矿预测新方法[J].物探与化探, 2013, 37(2):189-193. http://d.old.wanfangdata.com.cn/Conference/7610910
Li H, Yu B, Li D L, et al.A new prognostic method using structure superimposed halo in regional metallogenic belt[J].Geophysical and Geochemical Exploration, 2013, 37(2):189-193. http://d.old.wanfangdata.com.cn/Conference/7610910
[5] Galina V P, Tatyana S A, Alexander I F, et al.Analytical approaches for determination of bromine in sediment core samples by X-ray fluorescence spectrometry[J].Talanta, 2016, 160:375-380. doi: 10.1016/j.talanta.2016.07.059
[6] 吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002 http://www.ykcs.ac.cn/article/id/ykcs_20120302
Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002 http://www.ykcs.ac.cn/article/id/ykcs_20120302
[7] 夏鹏超, 李明礼, 王祝, 等.粉末压片制样波长色散X射线荧光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷硫[J].岩矿测试, 2012, 31(3):468-472. doi: 10.3969/j.issn.0254-5357.2012.03.016 http://www.ykcs.ac.cn/article/id/ykcs_20110421
Xia P C, Li M L, Wang Z, et al.Determination of major and minor elements of Mo, Cu, Pb, Zn, As, Ni and S in the porphyry type lindgrenite by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2012, 31(3):468-472. doi: 10.3969/j.issn.0254-5357.2012.03.016 http://www.ykcs.ac.cn/article/id/ykcs_20110421
[8] 刘江斌, 段九存, 党亮.X射线荧光光谱法同时测定铝土矿中主次组分及3种痕量元素[J].理化检验(化学分册), 2011, 47(10):1211-1216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103991166
Liu J B, Duan J C, Dang L.X-ray spectrometry determination of major, minor components and 3 trace elements in bauxites[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(10):1211-1216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103991166
[9] 李清彩, 赵庆令.粉末压片制样波长色散X射线荧光谱法测定钼矿石中9种元素[J].岩矿测试, 2014, 33(6):839-843. http://www.ykcs.ac.cn/article/id/ykcs_20110421
Li Q C, Zhao Q L.Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J].Rock and Mineral Analysis, 2014, 33(6):839-843. http://www.ykcs.ac.cn/article/id/ykcs_20110421
[10] 李小莉, 张勤.粉末压片-X射线荧光谱法测定土壤, 水系沉积物和岩石样品中15种稀土元素[J].治金分析, 2013, 33(7):35-40.
Li X L, Zhang Q.Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7):35-40.
[11] 郑荣华, 刘建坤.粉末压片-X射线荧光谱法测定矿石中钨, 锡[J].理化检验(化学分册), 2013, 49(1):66-68.
Zhen R H, Liu J K.Determination of tungsten and tin in ores with preparation of disc sample from its powder by pressing by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(1):66-68.
[12] 段家华, 马林泽, 张李斌.压片制样-X射线荧光光谱法测定高磷钢渣组分[J].冶金分析, 2013, 33(5):36-40. doi: 10.3969/j.issn.1000-7571.2013.05.008
Duan J H, Ma L Z, Zhang L B.Determination of components in high-phosphorus steel slag X-ray fluorescence spectrometry with tabletting sample preparation[J].Metallurgical Analysis, 2013, 33(5):36-40. doi: 10.3969/j.issn.1000-7571.2013.05.008
[13] 李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属结核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201401005
Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2014, 34(1):28-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201401005
[14] 陈静.X射线荧光光谱法测定地质样品中铌和钽的探讨[J].冶金分析, 2015, 35(10):24-29. http://d.old.wanfangdata.com.cn/Periodical/yjfx201510005
Chen J.Discussion on the determination of niobium and tantalum in geological samples by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2015, 35(10):24-29. http://d.old.wanfangdata.com.cn/Periodical/yjfx201510005
[15] 李先和, 万双, 刘子健, 等.X射线荧光光谱法测定铜精矿中10种元素[J].冶金分析, 2016, 36(6):55-59. http://d.old.wanfangdata.com.cn/Periodical/yjfx201606011
Li X H, Wan S, Liu Z J, et al.Determination of ten elements in copper concentrate by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(6):55-59. http://d.old.wanfangdata.com.cn/Periodical/yjfx201606011
[16] 唐梦奇, 黎香荣, 罗明贵, 等.X射线荧光光谱法测定锌精矿中主次量成分[J].冶金分析, 2012, 32(7):55-58. doi: 10.3969/j.issn.1000-7571.2012.07.012
Tang M Q, Li X R, Luo M G, et al.Determination of major and minor components in zinc concentrates by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2012, 32(7):55-58. doi: 10.3969/j.issn.1000-7571.2012.07.012
[17] 曾江萍, 张莉娟, 李小莉, 等.超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J].冶金分析, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007
Zeng J P, Zhang L J, Li X L, et al.Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J].Metallurgical Analysis, 2015, 35(7):37-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201507007
[18] 夏传波, 姜云, 郑建业, 等.X射线荧光光谱法测定地质样品中氯的含量[J].理化检验(化学分册), 2017, 53(7):775-779. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201707006
Xia C B, Jiang Y, Zheng J Y, et al.X-ray fluorescence spectrometric determination of Chlorine in Geological Samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(7):775-779. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201707006
[19] 卜兆杰, 蒋春宏, 陶泽秀, 等.粉末压片制样-X射线荧光光谱法测定稀土镁中间合金中镁锰硅钛钙铁[J].冶金分析, 2018, 38(3):61-64. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012
Bu Z J, Jiang C H, Tao Z X, et al.Determination of magnesium, manganese, silicon, titanium, calcium, iron in rare earth-magnesium intermediate alloy by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(3):61-64.. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803012
[20] 朱纪夏, 李庆美.X射线荧光光谱法快速测定铁中硅锰硫磷钛[J].理化检验(化学分册), 2004, 40(4):233-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200404021
Zhu J X, Li Q M.Fast X-ray fluorescence spectrometric determination of parathion manganese titanium in pig iron[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2004, 40(4):233-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx200404021
[21] 吕善胜, 徐金龙, 曲强.理论系数法和经验系数法结合相结合校正——X射线荧光光谱法测定铁矿石中14种组分[J].冶金分析, 2016, 36(4):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201604011
Lü S S, Xu J L, Qu Q.Determination of fourteen components in iron ore by X-ray fluorescence spectrometry with theoretical α coefficient and empirical coefficient method correction[J].Metallurgical Analysis, 2016, 36(4):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201604011
[22] 孙晓飞, 文孟喜, 杨丹丹.康普顿散射结合经验系数法校正X射线荧光光谱法测定石灰石和白云石中的应用[J].冶金分析, 2016, 36(1):11-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201601003
Sun X F, Wen M X, Yang D D.Application of Compton scatter and empirical coefficient correction in X-ray fluorescence spectrometric determination of limestone and dolomite[J].Metallurgical Analysis, 2016, 36(1):11-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201601003
[23] 苏梦晓, 陆安军.电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定地球化学样品中铜、铅、锌、镍的比较[J].冶金分析, 2015, 35(5):48-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201505009
Su M X, Lu A J.Comparison of inductively coupled plasma atomic emission spectrometry and spectrographic method for the determination of copper, lead, zinc, and nickel in geochemical samples[J].Metallurgical Analysis, 2015, 35(5):48-53. http://d.old.wanfangdata.com.cn/Periodical/yjfx201505009
[24] 卢艳蓉, 尹明兰, 杨龙莲.碱熔融氢化物发生-原子荧光光谱法测定铁矿石中铋[J].冶金分析, 2014, 34(12):57-61. http://d.old.wanfangdata.com.cn/Periodical/yjfx201412012
Lu Y R, Yin M L, Yang L L.Determination of bismuth in iron ore by alkali fusion hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2014, 34(12):57-61. http://d.old.wanfangdata.com.cn/Periodical/yjfx201412012
[25] 袁水海, 尹昌慧, 元志线, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
Yuan S H, Yin C H, Yuan Z X, et al.Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009