The Impact of Large Grain Clay Minerals on X-ray Diffraction Quantitative Analysis of Clay Minerals
-
摘要: 现行X射线衍射分析黏土矿物都是提取粒径小于2 μm的悬浮溶液检测样品的黏土矿物组合及含量,含量数据有时与其他检测数据相悖。在鄂尔多斯盆地黏土矿物研究中,通过偏光显微镜和扫描电镜发现存在粒径大于2 μm的黏土矿物颗粒,特别是高岭石的粒径多为3~10 μm,这些大颗粒黏土矿物会造成含量数据不准确。为了证明大颗粒黏土矿物对其含量测量的影响,本文设计了不同粒径标准的提取物对比试验:随机选取267个样品,每个样品分别按照10 μm和2 μm标准提取两份悬浮溶液制成测试片,采用SY/T 5163-2010行业标准中的检测方法得到10 μm和2 μm提取物的黏土矿物组合及含量。通过对比发现大颗粒黏土矿物对各类黏土矿物的相对含量测量结果有明显影响:10 μm提取物中高岭石含量明显增大;伊利石/蒙脱石间层矿物含量显著降低;伊利石含量的变化小且无规律;绿泥石含量整体变化较小,少量样品中绿泥石含量发生了明显的偏离,与大颗粒高岭石的赋存有关。本研究提出应结合地质状况和工作目的审慎选择提取粒径的标准,对SY/T 5163-2010中的黏土矿物提取粒径标准作出修订。Abstract:
BACKGROUND Current X-ray Diffraction analysis of clay minerals is used to detect the clay mineral assemblages and contents of suspended solution with a particle size of less than 2 μm, but the content data is sometimes inconsistent with other test data. The clay minerals with grain sizes larger than 2 μm in the Ordos Basin were observed by Polarizing Microscope and Scanning Electron Microscope (SEM). The kaolinite has grain sizes ranging from 3 μm to 10 μm, which would result in imprecise content data of clay minerals. OBJECTIVE To evaluate the influence of large particle clay minerals on the relative content of clay minerals by designing a comparative test of extracts from different particle size. METHODS 267 samples were selected randomly, and each sample was prepared by extracting two suspension solutions according to the standards of 10 μm and 2 μm, respectively. The clay mineral assemblages and contents of 10 μm and 2 μm extracts were obtained using the analytical method in the SY/T 5163-2010 industry standard. RESULTS Through comparison, it is found that large-grained clay minerals have a significant effect on the relative contents of various types of clay minerals. The clay minerals in 10 μm extracts have a higher content of kaolinite than the 2 μm extracts. Illite/montmorillonite interlayer mineral contents decrease significantly. The change in the illite content is small and irregular. The overall change in chlorite content is small, and the chlorite content in minor samples deviates significantly, which is related to the occurrence of large-particle kaolinite. The standard for extracting grain size should be carefully selected in combination with the geological conditions. CONCLUSIONS It is proved by this experiment that large particle kaolinite has a significant influence on the relative content of clay minerals. Furthermore, the extraction of particle size standards for clay minerals should be carefully chosen by the actual geological conditions and the purpose of the work. It is also suggested that the industry standard SY/T 5163-2010 should be revised. -
Key words:
- large grain /
- grain size /
- content of clay minerals /
- kaolinite /
- X-ray Diffraction
-
-
[1] Wilson M D. Inherited Grain-rimming Clays in Sandstones from Eolian and Shelf Environments: Their Origin and Control on Reservoir Properties[M]. Houseknecht D W, Pittman E D, Keller W D F. Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. SEPM Special Publication 47, 1992: 209-225.
[2] 何梦颖, 郑洪波, 黄湘通, 等.长江流域沉积物黏土矿物组合特征及物源指示意义[J].沉积学报, 2011, 29(3):544-551.
He M Y, Zheng H B, Huang X T, et al.Clay mineral assemblages in the Yangtze drainage and provenance implications[J].Acta Sedimentologica Sinica, 2011, 29(3):544-551.
[3] 黄宝玲, 王大锐.沉积岩中自生黏土矿物分离提纯方法的改进[J].岩矿测试, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012 http://www.ykcs.ac.cn/article/id/ykcs_20010362
Huang B L, Wang D R.An improved method for separation of authigenic clay minerals from sedimentary rocks[J].Rock and Mineral Analysis, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012 http://www.ykcs.ac.cn/article/id/ykcs_20010362
[4] Suryawanshi R A, Sawant P T, Golekar R B.Clay mineral study in tertiary sediments from Bhatia and Jaigarh Creek, Ratnagiri, M.S.(India)[J].International Journal of Advances in Earth Sciences, 2014, 3(2):52-60.
[5] Asikainen C A, Francus P, Brigham-Grette J.Sedimen-tology, clay mineralogy and grain-size as indicators of 65ka of climate change from El'gygytgyn Crater Lake, Northeastern Siberia[J].Journal of Paleolimnology, 2007, 37(1):105-122.
[6] Hubert F, Caner L, Meunier A, et al.Unraveling complex < 2μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions:Implications for soil pedogenesis and reactivity[J].American Mineralogist, 2012, 97(2-3):384-398. doi: 10.2138/am.2012.3900
[7] 迟广成, 张泉, 赵爱林, 等.X射线粉晶衍射仪定量测量海泡石矿样的实验条件[J].岩矿测试, 2012, 31(2):282-286. doi: 10.3969/j.issn.0254-5357.2012.02.016 http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb
Chi G C, Zhang Q, Zhao A L, et al.Experimental conditions of X-ray powder diffraction for sepiolite measurement[J].Rock and Mineral Analysis, 2012, 31(2):282-286. doi: 10.3969/j.issn.0254-5357.2012.02.016 http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb
[8] Ehrenberg S N.Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:Examples from the Norwegian Continental Shelf[J].AAPG Bulletin, 1993, 77(7):1260-1286.
[9] Bloch S, Lander R H, Bonnell L.Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability[J].AAPG Bulletin, 2002, 86(2):301-328.
[10] 黄思静, 谢连文, 张萌, 等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版), 2004, 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009
Huang S J, Xie L W, Zhang M, et al.Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J].Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009
[11] 兰叶芳, 黄思静, 吕杰.储层砂岩中自生绿泥石对孔隙结构的影响——来自鄂尔多斯盆地上三叠统延长组的研究结果[J].地质通报, 2011, 30(1):134-140. doi: 10.3969/j.issn.1671-2552.2011.01.014
Lan Y F, Huang S J, Lü J.Influences of authigenic chlorite on pore structure in sandstone reservoir:A case study from Upper Triassic Yanchang Formation in Ordos Basin, China[J].Geological Bulletin of China, 2011, 30(1):134-140. doi: 10.3969/j.issn.1671-2552.2011.01.014
[12] 黄思静, 武文慧, 刘洁, 等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学——中国地质大学学报, 2003, 28(4):419-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200304010
Huang S J, Wu W H, Liu J, et al.Generation of secondary porosity by meteoric water during time of subaerial exposure:An example from Yanchang Formation sandstone of Triassic of Ordos Basin[J].Earth Science-Journal of China University of Geosciences, 2003, 28(4):419-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200304010
[13] 赖兴运, 于炳松, 陈军元, 等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学(地球科学), 2004, 34(1):45-53. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200401005
Lai X Y, Yu B S, Chen J Y, et al.Thermodynamic conditions of clastic rock skeleton of particles dissolve and its application in Kela 2 gas field[J].Science in China (Earth Science), 2004, 34(1):45-53. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200401005
[14] 邹华耀, 郝芳, 柳广弟, 等.库车冲断带巴什基奇克组砂岩自生高岭石成因与油气成藏[J].石油与天然气地质.2005, 26(6):786-791. doi: 10.3321/j.issn:0253-9985.2005.06.014
Zou H Y, Hao F, Liu G D, et al.Genesis of authigenic kaolinite and gas accumulation in Bashijiqike Fm sandstone in Kuqa thrust belt[J].Oil & Gas Geology, 2005, 26(6):786-791. doi: 10.3321/j.issn:0253-9985.2005.06.014
[15] 朱世全, 黄思静, 姚鹏, 等.姬塬地区上三叠统长2油层组高岭石胶结与储层评价[J].沉积与特提斯地质, 2006, 26(1):88-91. doi: 10.3969/j.issn.1009-3850.2006.01.014
Zhu S Q, Huang S J, Yao P, et al.The kaolinite cementation and reservoir assessment of the Upper Triassic Chang-2 pay set in the Jiyuan region, Shaanxi[J].Sedimentary Geology and Tethyan Geology, 2006, 26(1):88-91. doi: 10.3969/j.issn.1009-3850.2006.01.014