中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

大颗粒黏土矿物对黏土矿物X射线衍射定量分析的影响

解古巍, 叶美芳, 黄静, 王小琳, 南珺祥, 任志鹏, 石小虎, 柳娜. 大颗粒黏土矿物对黏土矿物X射线衍射定量分析的影响[J]. 岩矿测试, 2018, 37(5): 499-506. doi: 10.15898/j.cnki.11-2131/td.201708190131
引用本文: 解古巍, 叶美芳, 黄静, 王小琳, 南珺祥, 任志鹏, 石小虎, 柳娜. 大颗粒黏土矿物对黏土矿物X射线衍射定量分析的影响[J]. 岩矿测试, 2018, 37(5): 499-506. doi: 10.15898/j.cnki.11-2131/td.201708190131
Gu-wei XIE, Mei-fang YE, Jing HUANG, Xiao-lin WANG, Jun-xiang NAN, Zhi-peng REN, Xiao-hu SHI, Na LIU. The Impact of Large Grain Clay Minerals on X-ray Diffraction Quantitative Analysis of Clay Minerals[J]. Rock and Mineral Analysis, 2018, 37(5): 499-506. doi: 10.15898/j.cnki.11-2131/td.201708190131
Citation: Gu-wei XIE, Mei-fang YE, Jing HUANG, Xiao-lin WANG, Jun-xiang NAN, Zhi-peng REN, Xiao-hu SHI, Na LIU. The Impact of Large Grain Clay Minerals on X-ray Diffraction Quantitative Analysis of Clay Minerals[J]. Rock and Mineral Analysis, 2018, 37(5): 499-506. doi: 10.15898/j.cnki.11-2131/td.201708190131

大颗粒黏土矿物对黏土矿物X射线衍射定量分析的影响

详细信息
    作者简介: 解古巍, 硕士, 地质勘探工程师, 主要从事岩石矿物X射线衍射分析和地层古生物研究。E-mail:xguwei_cq@petrochina.com.cn
  • 中图分类号: P588.22;P619.232;P575.5

The Impact of Large Grain Clay Minerals on X-ray Diffraction Quantitative Analysis of Clay Minerals

  • 现行X射线衍射分析黏土矿物都是提取粒径小于2 μm的悬浮溶液检测样品的黏土矿物组合及含量,含量数据有时与其他检测数据相悖。在鄂尔多斯盆地黏土矿物研究中,通过偏光显微镜和扫描电镜发现存在粒径大于2 μm的黏土矿物颗粒,特别是高岭石的粒径多为3~10 μm,这些大颗粒黏土矿物会造成含量数据不准确。为了证明大颗粒黏土矿物对其含量测量的影响,本文设计了不同粒径标准的提取物对比试验:随机选取267个样品,每个样品分别按照10 μm和2 μm标准提取两份悬浮溶液制成测试片,采用SY/T 5163-2010行业标准中的检测方法得到10 μm和2 μm提取物的黏土矿物组合及含量。通过对比发现大颗粒黏土矿物对各类黏土矿物的相对含量测量结果有明显影响:10 μm提取物中高岭石含量明显增大;伊利石/蒙脱石间层矿物含量显著降低;伊利石含量的变化小且无规律;绿泥石含量整体变化较小,少量样品中绿泥石含量发生了明显的偏离,与大颗粒高岭石的赋存有关。本研究提出应结合地质状况和工作目的审慎选择提取粒径的标准,对SY/T 5163-2010中的黏土矿物提取粒径标准作出修订。
  • 加载中
  • 图 1  悬浮溶液中颗粒的粒度分布图(a图为按2 μm标准提取的悬浮溶液;b图为按10 μm标准提取的悬浮溶液)

    Figure 1. 

    图 2  黏土矿物含量显著变化样品的E片图谱对比(上下两条谱线分别为10 μm和2 μm提取物)及扫描电镜和偏光显微镜中的高岭石颗粒

    Figure 2. 

    图 3  (a~d)样品2 μm提取物的含量与10 μm提取物的含量的相关性(横坐标为2 μm提取物的百分含量,纵坐标为10 μm提取物的百分含量);(e~f)对应黏土矿物10 μm和2 μm提取物含量差的相关性(百分比),图中符号的意义见正文

    Figure 3. 

    图 4  黏土矿物10 μm提取物含量相对于2 μm提取物含量的变化率(ROC)分布

    Figure 4. 

  • [1]

    Wilson M D. Inherited Grain-rimming Clays in Sandstones from Eolian and Shelf Environments: Their Origin and Control on Reservoir Properties[M]. Houseknecht D W, Pittman E D, Keller W D F. Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. SEPM Special Publication 47, 1992: 209-225.

    [2]

    何梦颖, 郑洪波, 黄湘通, 等.长江流域沉积物黏土矿物组合特征及物源指示意义[J].沉积学报, 2011, 29(3):544-551.

    He M Y, Zheng H B, Huang X T, et al.Clay mineral assemblages in the Yangtze drainage and provenance implications[J].Acta Sedimentologica Sinica, 2011, 29(3):544-551.

    [3]

    黄宝玲, 王大锐.沉积岩中自生黏土矿物分离提纯方法的改进[J].岩矿测试, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012 http://www.ykcs.ac.cn/article/id/ykcs_20010362

    Huang B L, Wang D R.An improved method for separation of authigenic clay minerals from sedimentary rocks[J].Rock and Mineral Analysis, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012 http://www.ykcs.ac.cn/article/id/ykcs_20010362

    [4]

    Suryawanshi R A, Sawant P T, Golekar R B.Clay mineral study in tertiary sediments from Bhatia and Jaigarh Creek, Ratnagiri, M.S.(India)[J].International Journal of Advances in Earth Sciences, 2014, 3(2):52-60.

    [5]

    Asikainen C A, Francus P, Brigham-Grette J.Sedimen-tology, clay mineralogy and grain-size as indicators of 65ka of climate change from El'gygytgyn Crater Lake, Northeastern Siberia[J].Journal of Paleolimnology, 2007, 37(1):105-122.

    [6]

    Hubert F, Caner L, Meunier A, et al.Unraveling complex < 2μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions:Implications for soil pedogenesis and reactivity[J].American Mineralogist, 2012, 97(2-3):384-398. doi: 10.2138/am.2012.3900

    [7]

    迟广成, 张泉, 赵爱林, 等.X射线粉晶衍射仪定量测量海泡石矿样的实验条件[J].岩矿测试, 2012, 31(2):282-286. doi: 10.3969/j.issn.0254-5357.2012.02.016 http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb

    Chi G C, Zhang Q, Zhao A L, et al.Experimental conditions of X-ray powder diffraction for sepiolite measurement[J].Rock and Mineral Analysis, 2012, 31(2):282-286. doi: 10.3969/j.issn.0254-5357.2012.02.016 http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb

    [8]

    Ehrenberg S N.Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:Examples from the Norwegian Continental Shelf[J].AAPG Bulletin, 1993, 77(7):1260-1286.

    [9]

    Bloch S, Lander R H, Bonnell L.Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability[J].AAPG Bulletin, 2002, 86(2):301-328.

    [10]

    黄思静, 谢连文, 张萌, 等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版), 2004, 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009

    Huang S J, Xie L W, Zhang M, et al.Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J].Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009

    [11]

    兰叶芳, 黄思静, 吕杰.储层砂岩中自生绿泥石对孔隙结构的影响——来自鄂尔多斯盆地上三叠统延长组的研究结果[J].地质通报, 2011, 30(1):134-140. doi: 10.3969/j.issn.1671-2552.2011.01.014

    Lan Y F, Huang S J, Lü J.Influences of authigenic chlorite on pore structure in sandstone reservoir:A case study from Upper Triassic Yanchang Formation in Ordos Basin, China[J].Geological Bulletin of China, 2011, 30(1):134-140. doi: 10.3969/j.issn.1671-2552.2011.01.014

    [12]

    黄思静, 武文慧, 刘洁, 等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学——中国地质大学学报, 2003, 28(4):419-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200304010

    Huang S J, Wu W H, Liu J, et al.Generation of secondary porosity by meteoric water during time of subaerial exposure:An example from Yanchang Formation sandstone of Triassic of Ordos Basin[J].Earth Science-Journal of China University of Geosciences, 2003, 28(4):419-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200304010

    [13]

    赖兴运, 于炳松, 陈军元, 等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学(地球科学), 2004, 34(1):45-53. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200401005

    Lai X Y, Yu B S, Chen J Y, et al.Thermodynamic conditions of clastic rock skeleton of particles dissolve and its application in Kela 2 gas field[J].Science in China (Earth Science), 2004, 34(1):45-53. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200401005

    [14]

    邹华耀, 郝芳, 柳广弟, 等.库车冲断带巴什基奇克组砂岩自生高岭石成因与油气成藏[J].石油与天然气地质.2005, 26(6):786-791. doi: 10.3321/j.issn:0253-9985.2005.06.014

    Zou H Y, Hao F, Liu G D, et al.Genesis of authigenic kaolinite and gas accumulation in Bashijiqike Fm sandstone in Kuqa thrust belt[J].Oil & Gas Geology, 2005, 26(6):786-791. doi: 10.3321/j.issn:0253-9985.2005.06.014

    [15]

    朱世全, 黄思静, 姚鹏, 等.姬塬地区上三叠统长2油层组高岭石胶结与储层评价[J].沉积与特提斯地质, 2006, 26(1):88-91. doi: 10.3969/j.issn.1009-3850.2006.01.014

    Zhu S Q, Huang S J, Yao P, et al.The kaolinite cementation and reservoir assessment of the Upper Triassic Chang-2 pay set in the Jiyuan region, Shaanxi[J].Sedimentary Geology and Tethyan Geology, 2006, 26(1):88-91. doi: 10.3969/j.issn.1009-3850.2006.01.014

  • 加载中

(4)

计量
  • 文章访问数:  1005
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2017-08-19
修回日期:  2018-03-24
录用日期:  2018-05-07

目录