中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

世界范围内代表性碧玉的矿物特征和成因研究

刘喜锋, 张红清, 刘琰, 张勇, 李自静, 张锦洪, 郑奋. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187
引用本文: 刘喜锋, 张红清, 刘琰, 张勇, 李自静, 张锦洪, 郑奋. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187
Xi-feng LIU, Hong-qing ZHANG, Yan LIU, Yong ZHANG, Zi-jing LI, Jin-hong ZHANG, Fen ZHENG. Mineralogical Characteristics and Genesis of Green Nephrite from the World[J]. Rock and Mineral Analysis, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187
Citation: Xi-feng LIU, Hong-qing ZHANG, Yan LIU, Yong ZHANG, Zi-jing LI, Jin-hong ZHANG, Fen ZHENG. Mineralogical Characteristics and Genesis of Green Nephrite from the World[J]. Rock and Mineral Analysis, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187

世界范围内代表性碧玉的矿物特征和成因研究

  • 基金项目:
    中国地质调查局地质调查工作项目“中国矿产地质与成矿规律综合集成和服务(矿产地质志)”(DD20160346);中国地质科学院基本科研业务费项目(YWF201601);国家自然科学基金项目(41772044)
详细信息
    作者简介: 刘喜锋, 硕士, 矿物学、岩石学、矿床学专业, 主要从事宝石科研和教学工作。E-mail:liuxf@gcu.edu.cn
    通讯作者: 刘琰, 副研究员, 矿物学、岩石学、矿床学专业, 主要从事稀土和稀有金属矿床研究。E-mail:ly@cags.ac.cn
  • 中图分类号: P619.281;P575.1;P575.2

Mineralogical Characteristics and Genesis of Green Nephrite from the World

More Information
  • 由于碧玉的样品来源、测试技术单一,有关碧玉的成因及其与大理岩型软玉之间的成因差别都不明确。本文采集了我国青海、俄罗斯、加拿大、新西兰、巴基斯坦等全球代表性碧玉样品,采用显微镜观察、X射线粉晶衍射、电子探针、电感耦合等离子体质谱和稳定同位素质谱等技术进行岩相学、矿物组成、微量和主量元素、氢氧同位素测试,对碧玉的成因进行综合分析,同时和澳大利亚大理岩型软玉进行对比性研究,以明确两种类型的软玉之间的成因差别。碧玉样品测试结果表明:①碧玉的主要组成是透闪石,次要矿物有石英、滑石、黑云母、铬铁矿、石墨、石榴石等;②氢氧同位素组成(δD值-69.763‰~-29.251‰,δ18O值4.7‰~13.4‰)显示由明显的变质水组成;③全岩Fe2+/(Mg+Fe2+)值为0.11~0.32,Cr含量约22.9~3400 μg/g,Ni含量为700~1800 μg/g,表明了明显的幔源物质参与成矿的特征。通过对比发现,碧玉与大理岩型软玉的地球化学性质有明显不同,这种差别与两者的产出环境有关:大理岩型软玉的矿物组成和地球化学特征受控于花岗岩和镁质大理岩,而碧玉的地球化学特征与幔源物质组成和变质流体相关。
  • 加载中
  • 图 1  碧玉的矿物组成、结构特征和形成过程

    Figure 1. 

    图 2  世界各地碧玉和澳大利亚镁质大理岩型软玉的氢氧同位素值

    Figure 2. 

    图 3  世界各地碧玉全岩化学成分对比(引自Siqin等[9])

    Figure 3. 

    图 4  世界各地碧玉矿床全岩Cr、Ni判别图(引自Adamo等[11])

    Figure 4. 

    表 1  世界各地碧玉全岩主量和微量元素分析数据

    Table 1.  Major and trace elements composition of nephrites in the world deposits

    下载: 导出CSV

    表 2  世界各地透闪石的氢氧同位素数据

    Table 2.  Hydrogen and oxygen isotope data of tremolite in the world deposits

    样品编号 矿床产地 δD
    (‰)
    δ18O
    (‰)
    δDH2O(‰)
    350~650℃ 330℃
    QH-1 青海 -56.167 8.6 -34.467 9.09
    QH-2 青海 -59.678 8.1 -37.978 8.59
    RUS-1 俄罗斯 -52.623 8.3 -30.923 8.79
    RUS-2 俄罗斯 -50.828 8.2 -29.128 8.69
    RUS-3 俄罗斯 -51.376 8.5 -29.676 8.99
    CAN-1 加拿大 -45.247 12.3 -23.547 12.79
    CAN-2 加拿大 -60.491 9.5 -38.791 9.99
    CAN-3 加拿大 -47.670 9.4 -25.970 9.89
    NZ-1 新西兰 -29.251 8.0 -7.551 8.49
    NZ-2 新西兰 -69.763 4.7 -48.063 5.19
    BL-1 巴基斯坦 -43.337 13.0 -21.637 13.49
    BL-2 巴基斯坦 -55.723 13.2 -34.023 13.69
    BL-3 巴基斯坦 -53.764 13.4 -32.064 13.89
    AUS-2 澳大利亚 -46.075 1.3 -24.375 1.79
    AUS-3 澳大利亚 -42.199 1.6 -20.499 2.09
    下载: 导出CSV

    表 3  蛇纹石型和大理岩型软玉的元素特征对比

    Table 3.  Comparison of element characteristics in serpentinite-related nephrites and dolomite-related nephrites

    样品 元素 与蛇纹石相关的软玉 与大理岩相关的软玉
    透闪石 Cr2O3(%) 0.08~0.36[7],0.07~0.43[4],0.020~0.127[3]
    0.08~1.65(本文)
    0.39~1.14[15],0.00~0.07[4],0.03~1.18[5]
    <0.05~0.09[23]
    NiO(%) 0.08~0.25[7],0.08~0.36[4],0.14~0.22(本文) 0.00~0.08[4], < 0.05~0.06[23]
    δ18O(‰) 4.5~5.3[10],6.9~9.6[2],4.7~13.4(本文) -9.9~-8.2[2],0.5~3.4[3],1.1~5.6[4]
    3.2~6.2[5],1.3~1.6(本文)
    δD(‰) -67~-33[10],-54~-39[2]
    -69.763~-29.251(本文)
    -114~-105[2],-124~-56[2],-72.4~
    -55.7[4],-94.7~-83.0[5],-113± 4.8[11]
    透辉石 Cr2O3(%) 0.018~0.640[3] 0.00~0.03[5]
    全岩 Cr(μg/g) 1220~1890[7],900~1113[8],1505.3~2812.1[9] 8.95~178.7[5],1.9~67.9[9]
    Ni(μg/g) 1199~1484[7],1887~1898[8],958.7~1304.4[9] 0.05~3.95[5],22.2~470.7[9]
    Co(μg/g) 204~207[8],42.0~53.0[9] 0.5~9.8[9]
    Fe2+/(Mg+Fe2+) >0.060[9],0.11~0.32(本文) < 0.060[9]
    下载: 导出CSV
  • [1]

    Harlow G E, Sorensen S S.Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47:113-146. doi: 10.2747/0020-6814.47.2.113

    [2]

    Yui T F, Kwon S T.Origin of a dolomite-related jade deposit at Chuncheon, Korea[J].Economic Geology, 2002, 97:593-601. doi: 10.2113/gsecongeo.97.3.593

    [3]

    Gil G, Barnes J D, Boschi C, et al.Origin of serpentinite-related nephrite from Jordanów and adjacent areas (SW Poland) and its comparison with selected nephrite occurrences[J].Geological Quarterly, 2015, 59(3):457-472.

    [4]

    Liu Y, Deng J, Shi G H, et al.Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Asian Earth Sciences, 2011, 42:440-451. doi: 10.1016/j.jseaes.2011.05.012

    [5]

    Liu Y, Deng J, Shi G H, et al.Geochemistry and petro-genesis of placer nephrite from Hetian, Xinjiang[J].Ore Geology Reviews, 2011, 41:122-132. doi: 10.1016/j.oregeorev.2011.07.004

    [6]

    Ling X X, Schmädicke E, Li Q L, et al.Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite:A case study of the nephrite deposit from Luanchuan, Henan, China[J].Lithos, 2015, 220-223:289-299. doi: 10.1016/j.lithos.2015.02.019

    [7]

    Grapes R H, Yun S T.Geochemistry of a New Zeland nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53:413-426. doi: 10.1080/00288306.2010.514929

    [8]

    Kostov R I, Protochristov C, Stoyanov C, et al.Micro-PIXE geochemical fingerprinting of nephrite Neolithic artifacts from Southwest Bulgaria[J].Geoarchaeology:An International Journal, 2012, 27:457-469. doi: 10.1002/gea.21417

    [9]

    Siqin B, Qian R, Zhuo S, et al.Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309:206-211. doi: 10.1016/j.ijms.2011.10.003

    [10]

    Yui T F, Yeh H W, Wang L C.Stable isotope studies of nephrite deposits from Fengtien, Taiwan[J].Geochimica et Cosmochimica Acta, 1988, 52:593-602. doi: 10.1016/0016-7037(88)90321-3

    [11]

    Adamo I, Bocchio R.Nephrite jade from Val Malenco, Italy:Review and update[J].Gems & Gemology, 2013, 49:98-106. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230901229/

    [12]

    Simandl G J, Riveros C P, Schiarizza P.Nephrite (jade) deposits, Mount Ogden area, Central British Columbia (NTS 093N 13W)[R].British Columbia Geology Survey, 1999:339-347.

    [13]

    Makepeace K, Simandl G J.Jade (nephrite) in British Columbia, Canada[R].Program and Extended Abstracts for 37th Forum on the Geology of Indutrial Minerals, 2001:209-210.

    [14]

    Łapot W.Peculiar nephrite from the East Saian Mts (Siberia)[J].Mineralogia Polonica, 2004, 35:49-58. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f0656765eb076f0764ab4b261290ef65

    [15]

    Liu Y, Deng J, Shi G H, et al.Chemical zone of nephrite in Almas, Xinjiang, China[J].Resource Geology, 2010, 60:249-259. doi: 10.1111/rge.2010.60.issue-3

    [16]

    Aitchison J C, Ireland T R, Blake Jr M C, et al.530Ma zircon age for ophiolite from the New England orogen:Oldest rocks known from Eastern Australia[J].Geology, 1992, 20:125-128. doi: 10.1130/0091-7613(1992)020<0125:MZAFOF>2.3.CO;2

    [17]

    Gunia P.Nephrite from South-Western Poland as poten-tial raw material of the European Neolithic artefacts[J].Krystalinikum, 2000, 26:167-171.

    [18]

    Clayton R N, Mayeda T K.The use of bromine penta fl-uoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta, 1963, 27:43-52. doi: 10.1016/0016-7037(63)90071-1

    [19]

    Friedman I.Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4:89-103. doi: 10.1016/0016-7037(53)90066-0

    [20]

    Liu Y, Zhang R Q, Abuduwayiti M, et al.SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72:699-727. doi: 10.1016/j.oregeorev.2015.08.023

    [21]

    Liu Y, Zhang R Q, Zhang Z Y, et al.Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215:128-144. doi: 10.1016/j.lithos.2014.11.002

    [22]

    Taylor Jr H P. Oxygen and hydrogen isotope relationships in hydro-thermal mineral deposits[A]. Barnes H L. Geochemistry of Hydro-thermal Ore Deposits(3rd ed. )[C]. Wiley-Interscience, New York, 1997: 229-302.

    [23]

    Ling X, Schmädicke E, Wu R, et al.Composition and distinction of white nephrite from Asian deposits[J].Journal of Mineralogy and Geochemistry, 2013, 190(1):49-65.

  • 加载中

(4)

(3)

计量
  • 文章访问数:  1890
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2017-12-01
修回日期:  2018-05-10
录用日期:  2018-06-11

目录