An Optimized Method for Determination of Ionic-phase Rare Earth Elements by ICP-MS Using Ammonium Sulfate Leaching
-
摘要: 离子吸附型稀土中离子相稀土的准确测定对稀土矿体资源评价具有重要意义。离子相稀土以羟基或水合羟基的形式吸附在黏土矿物上,可与强电解质(Mg2+、NH4+等)交换解吸进入溶液。前人以硫酸铵为淋滤液,实现了离子相稀土的解吸、提取,但在溶液浓度、浸取过程等方面选择各异,淋滤浸取率(60%~90%)差异大,未形成高效、统一的浸取方法,不利于离子相稀土元素的精确测定。本文通过对比实验规范了硫酸铵淋滤离子相稀土的各项淋滤参数(固液比、硫酸铵浓度、样品最佳称样量、浸泡时间),减少了淋滤过程中离子相稀土的损失,浸取率达到88%~98%,进而利用ICP-MS测定离子相稀土分量。方法检出限为0.05~5.11 ng/g;三类岩性离子吸附型稀土样品的精密度为:火山岩1.80%~10.01%,变质岩1.06%~7.27%,沉积岩1.72%~7.58%。协作实验室的分析结果验证了本方法的可靠性和准确性。本方法操作简便,分析效率高,为建立相关的行业标准乃至国家标准奠定了基础。
-
关键词:
- 离子吸附型稀土 /
- 离子相稀土 /
- 硫酸铵 /
- 淋滤浸取率 /
- 电感耦合等离子体质谱法
Abstract:BACKGROUND The accurate determination of ionic phase rare earths in ion-adsorption rare earths is of great significance for the evaluation of rare earth ore bodies. Ionic phase rare earths are adsorbed on clay minerals in the form of hydroxyl or hydrated hydroxyls and can be exchanged and desorbed with strong electrolytes (Mg2+, NH4+, etc.) into solution. The former used ammonium sulfate as the leachate to achieve the desorption and extraction of rare earth ions in the ion phase, but the solution concentration, leaching process and other aspects of choice, leaching rates (60% to 90%) are different. There is no efficient and uniform leaching method conducive to the accurate determination of ionic phase rare earth elements. OBJECTIVES To establish a high-efficiency leaching process by ammonium sulfate solution and determine the accurate contents of ionic-phase rare earth elements. METHODS The leaching parameters (solid-to-liquid ratio, ammonium sulfate concentration, best sample weight, and soaking time) of rare-earth ions by ammonium sulfate were standardized through comparative experiments, which reduced the loss of ionic phase rare earth during leaching. The leaching rates were from 88% to 98%, and ICP-MS was used to accurately determine the ion phase rare earth component. RESULTS The detection limits are 0.05-5.11 ng/g, and the relative standard deviations (RSDs) are 1.80%-10.01% for volcanic rock, 1.06%-7.27% for metamorphic rock, and 1.72%-7.58% for sedimentary rock. CONCLUSIONS The analytical results of the collaborative laboratory verify the reliability and accuracy of the method. This method is easy to operate and has high analysis efficiency. It provides the base for the establishment of relevant industry standards and national standards. -
表 1 空白和稀土待测液中稀土元素含量
Table 1. Analytical REE concentration in blank and rare earth solutions
元素 2.5%硫酸铵 3.0%硫酸铵 2.0%硫酸铵 空白待测液
(ng/mL)稀土待测液
(ng/mL)空白待测液
(ng/mL)稀土待测液
(ng/mL)空白待测液
(ng/mL)稀土待测液
(ng/mL)La 0.06 8.79 0.02 8.69 0.02 8.65 Ce 0.10 8.93 0.05 8.71 0.05 8.71 Pr 0.03 9.04 0.01 8.95 0.01 8.95 Nd 0.04 9.29 0.01 9.17 0.01 9.15 Sm 0.04 10.36 0.01 10.34 0.01 10.50 Eu 0.03 10.60 0.01 10.55 0.00 10.56 Gd 0.04 10.10 0.01 10.27 0.01 10.38 Tb 0.02 10.11 0.01 10.41 0.00 10.42 Dy 0.02 10.25 0.01 10.48 0.00 10.60 Ho 0.02 10.12 0.01 10.57 0.00 10.51 Er 0.02 10.40 0.00 10.83 0.00 10.73 Tm 0.02 10.22 0.00 10.79 0.00 10.69 Yb 0.01 10.36 0.00 10.76 0.00 10.71 Lu 0.01 10.20 0.00 10.57 0.00 10.66 Y 0.11 10.85 0.01 11.27 0.01 11.41 表 2 方法检出限及测定下限
Table 2. Detection limit and determination limit of elements
元素 方法检出限
(ng/g)方法测定
下限(ng/g)La 2.98 9.93 Ce 5.11 17.02 Pr 0.49 1.64 Nd 2.26 7.52 Sm 0.38 1.28 Eu 0.22 0.75 Gd 0.67 2.22 Tb 0.10 0.32 Dy 0.48 1.60 Ho 0.12 0.39 Er 0.42 1.39 Tm 0.06 0.20 Yb 0.23 0.76 Lu 0.05 0.17 Y 3.50 11.68 表 3 本研究方法和协作实验室A、B分析离子吸附型稀土样品中的离子相稀土含量
Table 3. Analytical concentrations of ionic-phase rare earth elements in sample HS-1, BZ-2 and CJ-3 determined by this study and collaboration laboratory A, B
元素 样品HS-1 样品BZ-2 样品CJ-3 本方法
测定值
(μg/g)RSD
(%)实验室A
测定值
(μg/g)实验室B
测定值
(μg/g)本方法
测定值
(μg/g)RSD
(%)实验室A
测定值
(μg/g)实验室B
测定值
(μg/g)本方法
测定值
(μg/g)RSD
(%)实验室A
测定值
(μg/g)实验室B
测定值
(μg/g)La 464.76 1.80 463.73 456.67 156.39 3.70 162.67 159.33 342.87 1.72 349.87 339.33 Ce 4.61 5.63 4.31 4.84 5.91 4.72 5.82 6.30 12.44 2.10 12.16 12.40 Pr 95.16 5.01 92.52 90.47 28.90 2.65 29.65 28.47 73.82 6.17 70.75 68.43 Nd 345.60 4.41 334.93 331.67 101.21 3.46 101.87 98.43 252.38 2.77 250.13 246.67 Sm 69.97 6.94 68.08 66.17 17.84 3.77 17.49 17.13 56.41 7.58 54.21 52.43 Eu 6.29 4.59 6.22 6.13 3.30 2.22 3.39 3.27 4.29 3.12 7.01 6.83 Gd 59.74 8.74 66.59 53.57 19.10 4.45 18.16 14.67 58.22 7.10 59.33 47.30 Tb 9.17 7.06 8.96 8.36 2.52 3.20 2.60 2.49 9.41 6.48 9.57 8.97 Dy 46.47 6.07 45.07 43.83 14.33 1.06 14.43 14.37 58.05 4.59 56.00 55.67 Ho 7.98 5.52 7.72 7.53 2.66 2.10 2.69 2.73 11.02 4.93 10.59 10.57 Er 19.93 9.16 19.73 19.63 7.14 3.70 7.30 6.75 30.16 6.98 30.08 27.87 Tm 2.32 10.01 2.17 2.14 0.83 6.78 0.86 0.88 4.15 3.82 3.98 4.23 Yb 12.05 6.47 11.95 11.20 4.64 6.25 4.82 4.83 25.84 4.84 24.77 26.17 Lu 1.55 7.63 1.55 1.39 0.54 7.27 0.57 0.55 3.50 3.97 3.39 3.40 Y 221.34 7.83 226.40 199.67 74.98 5.81 81.33 71.57 323.42 6.03 352.53 307.33 -
[1] 王登红, 赵芝, 于扬, 等.离子吸附型稀土资源研究进展、存在问题及今后研究方向[J].岩矿测试, 2013, 32(5):796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020 http://www.ykcs.ac.cn/article/id/70179d82-4d1a-4971-a71f-dcaf6942ab7b
Wang D H, Zhao Z, Yu Y, et al.Progress, problems and research orientation of ion-adsorption type rare earth resources[J].Rock and Mineral Analysis, 2013, 32(5):796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020 http://www.ykcs.ac.cn/article/id/70179d82-4d1a-4971-a71f-dcaf6942ab7b
[2] 丁嘉榆, 邓国庆.现行离子型稀土勘查规范存在的主要问题与修订建议[J].有色金属科学与工程, 2013, 4(4):96-102. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201304017
Ding J Y, Deng G Q.Main problems in the current ionic adsorption rare earth exploration specifications and their amendment proposals[J].Nonferrous Metals Science and Engineering, 2013, 4(4):96-102. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201304017
[3] 张恋, 吴开兴, 陈陵康, 等.赣南离子吸附型稀土矿床成矿特征概述[J].中国稀土学报, 2015, 33(1):10-17. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201501002
Zhang L, Wu K X, Chen L K, et al.Overview of metallogenic features of ion-adsorption type REE deposits in Southern Jiangxi Province[J].Journal of the Chinese Society of Rare Earths, 2015, 33(1):10-17. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201501002
[4] Chi R A, Tian J, Li Z J, et al.Existing state and parti-tioning of rare earth on weathered ores[J].Journal of Rare Earths, 2005, 23(6):756-759.
[5] 邱廷省, 伍红强, 方夕辉.离子型稀土矿浸出过程优化与分析[J].有色金属科学与工程, 2012, 3(4):43-47. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201204009
Qiu T S, Wu H Q, Fang X H.Optimization and analysis of the leaching process of ionic rare earth[J].Nonferrous Metals Science and Engineering, 2012, 3(4):43-47. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201204009
[6] Xiao Y F, Feng Z Y, Hu G H, et al.Reduction leaching of rare earth from ion-adsorption type rare earths ore with ferrous sulfate[J].Journal of Rare Earths, 2016, 34(9):917-923. doi: 10.1016/S1002-0721(16)60115-1
[7] Georgiana A M, Vladimiros G P.Leaching of lanthanides from various weathered elution deposited ores[J].Canadian Metallurgical Quarterly, 2013, 52(3):257-264. doi: 10.1179/1879139513Y.0000000060
[8] 肖燕飞, 黄莉, 李明来, 等.ICP-AES法测定离子吸附型稀土矿镁盐体系稀土浸出液中稀土与非稀土杂质[J].稀有金属, 2017(4):283-291. http://d.old.wanfangdata.com.cn/Periodical/xyjs201704009
Xiao Y F, Huang L, Li M L, et al.Determination of rare earth elements and non-rare earth elements in leaching solution with magnesium salt system of ion-adsorption type rare earths ore by ICP-AES[J].Chinese Journal of Rare Metals, 2017(4):283-291. http://d.old.wanfangdata.com.cn/Periodical/xyjs201704009
[9] 代小吕, 赵金宝, 贺颖婷, 等.电感耦合等离子体质谱(ICP-MS)法测定离子吸附型稀土矿中的浸出稀土元素[J].中国无机分析化学, 2015, 5(4):35-40. doi: 10.3969/j.issn.2095-1035.2015.04.008
Dai X L, Zhao J B, He Y T, et al.Determination of leaching rare earth elements in ion adsorption type rare earth ore by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4):35-40. doi: 10.3969/j.issn.2095-1035.2015.04.008
[10] 王莉, 王超, 廖春发, 等.离子间的相互作用对离子吸附型稀土浸出行为的影响[J].稀有金属, DOI:10.13373/j.cnki.cjrm.XY1780018.
Wang L, Wang C, Liao C F, et al.The effect of ionic interaction on leaching behavior of ion-adsorption type rare earth ore[J].Chinese Journal of Rare Metals, DOI:10.13373/j.cnki.cjrm.XY1780018.
[11] Yang X J, Lin A J, Li X L, et al.China's ion-adsorption rare earth resources, mining consequences and preservation[J].Environmental Development, 2013, 8:131-136. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231797507/
[12] Georgiana A M, Vladimiros G P.Recovery of rare earth elements adsorbed on clay minerals:Ⅱ.Leaching with ammonium sulfate[J].Hydrometallurgy, 2013, 131:158-166.
[13] 施意华, 邱丽, 唐碧玉, 等.电感耦合等离子体质谱法测定离子型稀土矿中离子相稀土总量及分量[J].冶金分析, 2014, 34(9):14-15. http://d.old.wanfangdata.com.cn/Periodical/yjfx201409003
Shi Y H, Qiu L, Tang B Y, et al.Determination of total ionic-phase rare earth and component in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2014, 34(9):14-15. http://d.old.wanfangdata.com.cn/Periodical/yjfx201409003
[14] Hu G H, Feng Z Y, Dong J S, et al.Mineral properties and leaching characteristics of volcanic weathered crust elution-deposited rare earth ore[J].Journal of Rare Earths, 2017, 35(9):906-910. doi: 10.1016/S1002-0721(17)60993-1
[15] 时晓露, 凤海元.电感耦合等离子体质谱法测定离子型稀土矿中16种离子吸附型稀土元素的含量[J].理化检验(化学分册), 2016, 52(10):1230-1233. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201610034
Shi X L, Feng H Y.ICP-MS determination of 16 ionic adsorptive rare earth elements in ionic rare earth ores[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(10):1230-1233. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201610034
[16] 黄万抚, 张宏廷, 王金敏, 等.半风化离子吸附型稀土的浸取实验[J].有色金属科学与工程, 2015, 6(6):121-124. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201506022
Huang W F, Zhang H T, Wang J M, et al.Leaching experiment of semi-weathered ion adsorption type rare earth ore[J].Nonferrous Metals Science and Engineering, 2015, 6(6):121-124. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201506022
[17] Yan H S, Liang T M, Liu Q S, et al.Compound leaching behavior and regularity of ionic rare earth ore[J].Powder Technology, DOI:10.1016/j.powtec.2018.04.010.
[18] Sanjukta A K, Shailaja P P, Sangita D K.Determination of rare earth elements in Indian kimberlite using inductively coupled plasma mass spectrometer (ICP-MS)[J].Journal of Radioanalytical and Nuclear Chemistry, 2012, 294:419-424. doi: 10.1007/s10967-012-1704-3
[19] 王晶, 朱美文, 彭光宇, 等.电感耦合等离子体质谱法测定多种中药材中十六种稀土元素的研究[J].分析科学学报, 2014, 30(4):587-589. http://d.old.wanfangdata.com.cn/Periodical/fxkxxb201404036
Wang J, Zhu M W, Peng G Y, et al.Determination of sixteen rare earth elements in varied Chinese Herbal medicine by inductively coupled plasma mass spectrometry[J].Journal of Analytical Science, 2014, 30(4):587-589. http://d.old.wanfangdata.com.cn/Periodical/fxkxxb201404036
[20] 陈贺海, 荣德福, 付冉冉, 等.微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J].岩矿测试, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005
Chen H H, Rong D F, Fu R R, et al.Determination of fifteen rare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005
[21] Raunt N M, Huang L S, Lin K C, et al.Uncertainty propagation through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2005, 530(1):91-103. doi: 10.1016/j.aca.2004.08.067
[22] 刘贵磊, 许俊玉, 温宏利, 等.动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J].桂林理工大学学报, 2016, 36(1):176-183. doi: 10.3969/j.issn.1674-9057.2016.01.024
Liu G L, Xu J Y, Wen H L, et al.Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1):176-183. doi: 10.3969/j.issn.1674-9057.2016.01.024
[23] 池汝安, 田君.风化壳淋积型稀土矿评述[J].中国稀土学报, 2007, 25(6):641-650. doi: 10.3321/j.issn:1000-4343.2007.06.001
Chi R A, Tian J.Review of weathered crust rare earth ore[J].Journal of the Chinese Rare Earth Society, 2007, 25(6):641-650. doi: 10.3321/j.issn:1000-4343.2007.06.001
[24] Xiao Y F, Gao G H, Huang L, et al.A discussion on the leaching process of the ion-adsorption type rare earth ore with the electrical double layer model[J].Minerals Engineering, 2018, 120:35-43. doi: 10.1016/j.mineng.2018.02.015