中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素

张莉娟, 徐铁民, 方蓬达, 魏双. 超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素[J]. 岩矿测试, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195
引用本文: 张莉娟, 徐铁民, 方蓬达, 魏双. 超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素[J]. 岩矿测试, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195
Li-juan ZHANG, Tie-min XU, Peng-da FANG, Shuang WEI. Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling[J]. Rock and Mineral Analysis, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195
Citation: Li-juan ZHANG, Tie-min XU, Peng-da FANG, Shuang WEI. Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling[J]. Rock and Mineral Analysis, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195

超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素

详细信息
    作者简介: 张莉娟, 高级工程师, 从事岩石矿物的光谱分析。E-mail:zhanglij19@163.com
    通讯作者: 徐铁民, 硕士, 教授级高级工程师, 长期从事岩石矿物分析研究。E-mail:xutm1@163.com
  • 中图分类号: O657.63;S151.93

Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling

More Information
  • 固体进样技术应用于土壤样品测量领域,一直受制于样品粒径的限制,无法应用在配有气动雾化器的分析仪器上。本文系统研究了土壤样品超细粉碎技术,在乙醇介质下,数分钟内将其粉碎至微米级,经此制成的固体悬浮液直接进行电感耦合等离子体质谱法(ICP-MS)测定,可以避免气动雾化器的堵塞。标准物质测定表明,样品粒径为6.8μm时,固体悬浮液进样仍然存在干扰,通过在固体悬浮液中加入少量氢氟酸和硝酸,对固体悬浮液进行改性,减小了固体悬浮液中固体颗粒粒径,从而减少了样品粒径的影响,可用ICP-MS测定土壤中锂铍钒铬镍铜锌铷锶镉铯钡铅等13个微量元素。经国家一级标准物质验证,本方法的最大相对误差在10.5%左右,多数元素的相对误差小于5%,相对标准偏差(RSD)小于5.4%(镉元素除外),满足了DZ/G 0130-2006质量控制要求。
  • 加载中
  • 表 1  土壤样品粉碎实验结果

    Table 1.  Grinding test of soil sample

    粉碎条件 土壤样品累积占比对应的粒径(μm) 平均粒径
    (μm)
    75% 85% 98%
    干磨 20.7 33.8 54.3 14.1
    水介质 6.93 9.46 17.5 4.58
    乙醇介质 4.13 4.97 6.76 3.08
    下载: 导出CSV

    表 2  土壤固体悬浮液进样测定结果(标准溶液为校准工作曲线)

    Table 2.  Analytical results of soil slurry sampling (standard solution as a calibration curve)

    元素 GBW07407 GBW07455
    认定值
    (×10-6)
    测定值
    (×10-6)
    相对误差
    (%)
    认定值
    (×10-6)
    测定值
    (×10-6)
    相对误差
    (%)
    Li 19.5 7.11 63.5 31.0 11.5 62.8
    Be 2.80 1.12 60.0 1.90 0.67 64.8
    V 245 83.9 65.8 72.0 51.6 28.3
    Cr 410 216 47.3 61.0 38.4 37.0
    Ni 276 100 63.8 26.0 18.9 27.3
    Cu 97.0 33.0 66.0 19.1 14.3 25.1
    Zn 142 57.6 59.4 62.0 43.3 30.2
    Rb 16.0 5.60 65.0 91.0 38.4 57.8
    Sr 26.0 8.05 69.0 184 80.0 56.5
    Cd 0.08 0.051 36.3 0.14 0.098 30.3
    Cs 2.70 1.20 55.6 6.00 2.69 55.1
    Ba 180 36.4 79.8 504 159 68.4
    Pb 14.0 7.56 46.0 21.0 12.3 41.4
    下载: 导出CSV

    表 3  土壤固体悬浮液进样测定结果(校准标准曲线为标准物质悬浮液)

    Table 3.  Analytical results of soil slurry sampling (standard substance slurry as a calibration curve)

    元素 GBW07426 GBW07430
    标准值
    (×10-6)
    测定值
    (×10-6)
    相对误差
    (%)
    允许误差
    (%)
    标准值
    (×10-6)
    测定值
    (×10-6)
    相对误差
    (%)
    允许误差
    (%)
    Li 36.0 40.9 13.5 15.3 51.0 51.1 0.10 14.4
    Be 2.04 2.25 10.3 24.3 3.80 3.75 1.20 22.1
    V 86.0 94.5 9.90 13.1 105 102 2.50 12.7
    Cr 59.0 66.4 12.5 14.0 67.0 68.4 2.10 13.7
    Ni 32.0 32.9 2.90 15.6 27.4 24.1 12.0 16.0
    Cu 29.0 31.0 6.90 15.8 32.0 31.0 3.20 15.6
    Zn 78.0 86.8 11.3 13.3 100 101 1.30 12.8
    Rb 94.0 107 13.9 12.9 173 178 2.60 11.5
    Sr 240 334 39.3 10.9 68.0 59.5 12.5 13.7
    Cd 0.15 0.17 13.3 30.0 0.25 0.30 20.0 30.0
    Cs 7.20 8.11 12.6 19.9 13.9 14.5 4.40 17.9
    Ba 492 488 0.90 9.40 411 372 9.40 9.80
    Pb 19.0 21.5 13.0 17.0 61.0 57.5 5.70 13.9
    下载: 导出CSV

    表 4  GBW07407和GBW07455固体悬浮液加入氢氟酸及氢氟酸+硝酸混合酸测定结果

    Table 4.  Analytical results of GBW07407 and GBW07455 solid slurry with hydrofluoric acid and hydrofluoric acid+nitric acid

    元素 GBW07407固体悬浮液
    0.5mL氢氟酸 1.0mL氢氟酸 2.0mL氢氟酸 2.0mL氢氟酸+2.0mL硝酸
    测定值
    (×10-6)
    相对误差
    (%)
    测定值
    (×10-6)
    相对误差
    (%)
    测定值
    (×10-6)
    相对误差
    (%)
    测定值
    (×10-6)
    相对误差
    (%)
    Li 20.2 3.59 19.5 0.00 19.3 1.03 20.1 3.08
    Be 2.92 4.29 2.82 0.71 2.75 1.79 2.72 2.86
    V 244 0.41 241 1.63 241 1.63 246 0.41
    Cr 368 10.2 377 8.05 379 7.56 393 4.15
    Ni 276 0.00 270 2.17 267 3.26 270 2.17
    Cu 89.8 7.42 89.2 8.04 88.0 9.28 89.9 7.32
    Zn 128 9.86 134 5.63 131 7.75 139 2.11
    Rb 15.0 6.25 15.3 4.38 16.3 1.88 16.6 3.75
    Sr 17.3 33.5 17.2 33.8 18.8 27.7 23.4 10.0
    Cd 0.055 31.3 0.075 6.25 0.083 3.75 0.089 11.0
    Cs 2.58 4.44 2.53 6.30 2.53 6.30 2.57 4.81
    Ba 125 30.6 142 21.1 149 17.2 179 0.56
    Pb 13.2 5.71 12.8 8.57 13.1 6.43 14.4 2.86
    元素 GBW07455固体悬浮液
    0.5mL氢氟酸 1.0mL氢氟酸 2.0mL氢氟酸 2.0mL氢氟酸+2.0mL硝酸
    测定值
    (×10-6)
    相对误差
    (%)
    测定值
    (×10-6)
    相对误差
    (%)
    测定值
    (×10-6)
    相对误差
    (%)
    测定值
    (×10-6)
    相对误差
    (%)
    Li 29.2 5.81 27.8 10.3 28.6 7.74 29.3 5.48
    Be 1.97 3.68 2.07 8.95 1.97 3.68 1.96 3.16
    V 68.3 5.14 66.3 7.92 69.3 3.75 68.9 4.31
    Cr 56.0 8.20 56.6 7.21 59.5 2.46 58.3 4.43
    Ni 25.2 3.08 24.6 5.38 26.3 1.15 25.5 1.92
    Cu 16.8 12.0 16.2 15.2 17.5 8.38 17.1 10.5
    Zn 56.0 9.68 56.8 8.39 58.7 5.32 60.2 2.90
    Rb 72.7 20.1 76.4 16.0 84.6 7.03 88.6 2.64
    Sr 78.2 57.5 84.1 54.3 86.5 52.3 187 1.47
    Cd 0.15 7.14 0.14 0.00 0.15 7.14 0.15 7.14
    Cs 2.65 55.8 2.95 50.8 3.30 45.0 6.05 0.83
    Ba 278 44.8 245 51.4 258 48.8 453 10.1
    Pb 17.7 15.7 18.0 14.3 19.7 6.19 22.8 8.57
    下载: 导出CSV

    表 5  精密度实验

    Table 5.  Precision test of the method

    测量次数 Li Be V Cr Ni Cu Zn Rb Sr Cd Cs Ba Pb
    1 19.9 2.33 223 385 252 96.7 126 14.9 24.6 0.072 2.25 171 12.9
    2 20.8 2.28 229 395 257 97.6 130 15.4 26.0 0.067 2.34 172 12.3
    3 20.4 2.38 225 394 253 96.8 129 15.6 24.8 0.082 2.33 172 12.4
    4 20.4 2.43 226 395 254 97.6 129 16.6 24.9 0.066 2.37 172 12.5
    5 20.3 2.36 222 390 252 94.7 128 17.2 24.6 0.059 2.39 172 12.3
    6 20.3 2.33 223 395 248 94.5 126 17.2 24.5 0.072 2.38 171 12.4
    7 20.7 2.27 227 393 255 96.3 129 17.8 25.3 0.087 2.39 177 12.8
    8 19.9 2.32 221 393 250 93.5 128 17.3 24.6 0.055 2.33 173 13.6
    9 20.1 2.20 218 389 246 92.5 125 16.8 24.0 0.073 2.28 170 12.6
    10 19.5 2.10 220 388 246 91.9 125 17.2 24.1 0.078 2.35 171 12.6
    11 19.7 2.23 223 393 248 90.6 124 17.1 24.6 0.086 2.31 172 12.8
    12 19.2 2.24 221 394 244 89.5 120 16.1 24.3 0.064 2.32 172 12.8
    平均值(×10-6) 20.1 2.29 223 392 250 94.3 126 16.6 24.7 0.072 2.34 172 12.7
    标准偏差(×10-6) 0.49 0.090 3.05 3.36 3.98 2.78 2.92 0.89 0.54 0.010 0.040 1.66 0.37
    相对标准偏差(%) 2.43 3.89 1.37 0.86 1.59 2.95 2.31 5.35 2.19 14.19 1.84 0.97 2.92
    下载: 导出CSV
  • [1]

    Bredy D V, Montalvo J, Glowacki J G.Direct deter-mination of zinc in sea-bottom sediments by carbon tube atomic absorption spectrometry[J].Analytica Chimica Acta, 1974, 70(2):448-452. doi: 10.1016/S0003-2670(01)85200-4

    [2]

    邓勃.电热原子吸收光谱分析中进样技术的进展(上)[J].现代仪器与医疗, 2009, 15(5):19. http://d.old.wanfangdata.com.cn/Periodical/xdyq200905001

    Deng B.Advance of samplingtechnique in electrothermal atomic absorption spectrometry (Ⅰ)[J].Modern Instruments & Medical Treatment, 2009, 15(5):19. http://d.old.wanfangdata.com.cn/Periodical/xdyq200905001

    [3]

    Ryszard D, Agnieszka M, Magdalena O, et al.Develop-ment of sensitive determination method for platinum in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry[J].Microchemical Journal, 2015, 121(7):18-24. http://cn.bing.com/academic/profile?id=cb0f9b3af41c325ef53d666940b846a7&encoded=0&v=paper_preview&mkt=zh-cn

    [4]

    Peng Y, Wei G, Ping Z, et al.Heatassisted slurry sampling GFAAS method for determination of lead in food standard reference materials[J].Journal of Food Composition and Analysis, 2015, 42(9):78-83. http://cn.bing.com/academic/profile?id=61b7c0850f5320acdea8c140d056117d&encoded=0&v=paper_preview&mkt=zh-cn

    [5]

    Husáková L, Urbanová I, Šafránková M.Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO2 interference by least-squares background correction[J].Talanta, 2017, 175(1):93-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=541578d0929d010b68dd15e63b21c027

    [6]

    张换平, 王书红, 张盼, 等.悬浮液进样石墨炉原子吸收光谱法测定茶叶中铜和铅的溶出率[J].理化检验(化学分册), 2017, 53(9):1078-1080. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201709020

    Zhang H P, Wang S H, Zhang P, et al.The dissolution rate of copper and lead in tea determined by suspension sampling graphite furnace atomic absorption spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9):1078-1080. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201709020

    [7]

    Camila K A, Patricia M K B, Vanessa E A, et al.Deter-mination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry:A case study for Brazilian yogurt[J].Food Chemistry, 2018, 240(1):268-274. https://www.researchgate.net/publication/318687464_Determination_of_Cu_Cd_Pb_and_Cr_in_Yogurt_by_Slurry_Sampling_Electrothermal_Atomic_Absorption_Spectrometry_A_Case_Study_for_Brazilian_Yogurt

    [8]

    Daria G F, Vasilina V E, Vasilisa B B, et al.Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high resolution continuum source graphite furnace atomic absorption spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 140(2):14. http://cn.bing.com/academic/profile?id=581c92de5fdfa0d1a1447d66787cf1e2&encoded=0&v=paper_preview&mkt=zh-cn

    [9]

    Rennan G O A, Nedio O, Roger T R, et al.Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry[J].Talanta, 2008, 77(1):400-406. doi: 10.1016/j.talanta.2008.06.047

    [10]

    卢桂萍, 汪正, 邱德仁.悬浮液进样石墨炉原子吸收光谱分析进展[J].光谱学与光谱分析, 2010, 30(8):2253-2259. doi: 10.3964/j.issn.1000-0593(2010)08-2253-07

    Lu G P, Wang Z, Qiu D R.Research advance in slurry introduction for graphite furnace atomic absorption spectrometry[J].Spectroscopy and Spectral Analysis, 2010, 30(8):2253-2259. doi: 10.3964/j.issn.1000-0593(2010)08-2253-07

    [11]

    温晓华, 邵超英, 张琢, 等.悬浮液进样氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J].岩矿测试, 2007, 26(6):460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007 http://www.ykcs.ac.cn/article/id/ykcs_200706162

    Wen X H, Shao C Y, Zhang Z, et al.Determinationof trace arsenic, antimony, selenium in soil samples by hydride generation atomic fluorescence spectrometry with slurry sample introduction[J].Rock and Mineral Analysis, 2007, 26(6):460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007 http://www.ykcs.ac.cn/article/id/ykcs_200706162

    [12]

    Pedro R A, Raul A G, Susana M, et al.Slurry sampling in serum blood for mercury determination by CVAFS[J].Journal of Hazardous Materials, 2009, 161(1):1399-1403. http://cn.bing.com/academic/profile?id=a1cf5f64d33e25b87a1c46be0e142b8b&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    Lin M L, Jiang S J.Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry[J].Food Chemistry, 2013, 141(3):2158-2162. doi: 10.1016/j.foodchem.2013.04.105

    [14]

    Wan H H, Shiuh J J, Sahayam A C.Determination of Pd, Rh, Pt, Au in road dust by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J].Analytica Chimica Acta, 2013, 794(10):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91f691bba096a858f3f9cf75b3f3373a

    [15]

    Sadiq N, Beauchemin D.Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice[J].Analytica Chimica Acta, 2014, 851(12):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a6e47cb48c3a6e81ec1ebcaa44ce98d

    [16]

    Chien C C, Shiuh J J, Sahayam A C.Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature[J].Talanta, 2015, 131(1):585-589. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=403ad89eaaad1241ae3421dd926606a6

    [17]

    Wei N C, Shiuh J J, Yen L C, et al.Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions[J].Analytica Chimica Acta, 2015, 860(2):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53f7baf58cf124b2e2666f124a0374f0

    [18]

    Chia Y T, Shiuh J J, Sahayam A C.Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry[J].Food Chemistry, 2016, 192(1):274-279. http://cn.bing.com/academic/profile?id=b1a043084e53d8994f70224eb786e21f&encoded=0&v=paper_preview&mkt=zh-cn

    [19]

    Xue J S, Taic H D, Peng R G, et al.Determination of Nb and Ta in Nb/Ta minerals by inductively coupled plasmas optical emission spectrometry using slurry sample introduction[J]. Microchemical Journal, 2006, 84(12):22-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48c28d0af13a0dbb784e8a247d4ed0f8

    [20]

    Rafael A S, Nivaldo B, Solange C.Determination of elemental content in solid sweeteners by slurry sampling and ICPOES[J].Food Chemistry, 2011, 124(3):1264-1267. doi: 10.1016/j.foodchem.2010.07.059

    [21]

    Geovani C B, Geraldo D M, Sergio L C F.Slurry sampling and high resolution continuum source flame atomic absorption spectrometry using secondary lines for the determination of Ca and Mg in dairy products[J].Microchemical Journal, 2011, 98(2):231-233. doi: 10.1016/j.microc.2011.02.005

    [22]

    Fábio A C A, Vinicius C C, Erik G P S, et al.Multivariate optimization of simple procedure for determination of Fe and Mg in cassava starch employing slurry sampling and FAAS[J].Food Chemistry, 2017, 227(7):41-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f4e8b3cafc997441b7e56d2f889c9a2

    [23]

    毛雪飞, 刘霁欣, 王敏, 等.固体进样元素分析技术在农产品质量安全中的应用[J].中国农业科学, 2013, 46(16):3432-3443. doi: 10.3864/j.issn.0578-1752.2013.16.014

    Mao X F, Liu J X, Wang M, et al.Applications of solid sampling analytical technologies of elements for quality and safety of agriproducts[J].Scientia Agricultura Sinica, 2013, 46(16):3432-3443. doi: 10.3864/j.issn.0578-1752.2013.16.014

    [24]

    周享春, 黄春华, 吴爱斌.脉冲悬浮体进样火焰原子吸收光谱法直接测定土壤中铬[J].理化检验(化学分册), 2001, 37(3):97-98. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx200103001

    Zhou X C, Huang C H, Wu A B.Direct FAAS determination of trace amounts of chromium in soil by pulse slurry sampling[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2001, 37(3):97-98. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx200103001

    [25]

    张军烨, 汪正, 杜一平, 等.悬浮液进样电感耦合等离子体发射光谱中颗粒的输运和蒸发行为[J].分析化学, 2011, 39(5):658-663. http://www.cnki.com.cn/Article/CJFDTotal-FXHX201105015.htm

    Zhang J Y, Wang Z, Du Y P, et al.Transportation and evaporation behavior of suspension particle for slurry nebulization introduction in inductively coupled plasma optical emission spectrometry[J].Chinese Journal of Analytical Chemistry, 2011, 39(5):658-663. http://www.cnki.com.cn/Article/CJFDTotal-FXHX201105015.htm

    [26]

    Xiang Q G, Hu B, Jiang C Z, et al.A comparison of slurry sampling electrothermal vaporization and slurry nebulization inductively coupled plasma mass spectrometry for the direct determination of trace impurities in titanium dioxide powder[J].Journal of Mass Spectrometry, 2006, 41(10):1378-1385. doi: 10.1002/(ISSN)1096-9888

  • 加载中

(5)

计量
  • 文章访问数:  3759
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2017-12-19
修回日期:  2018-04-23
录用日期:  2018-06-11

目录