Determination of Trace Elements in Soil by Inductively Coupled Plasma-Mass Spectrometry with Ultrafine Slurry Sampling
-
摘要: 固体进样技术应用于土壤样品测量领域,一直受制于样品粒径的限制,无法应用在配有气动雾化器的分析仪器上。本文系统研究了土壤样品超细粉碎技术,在乙醇介质下,数分钟内将其粉碎至微米级,经此制成的固体悬浮液直接进行电感耦合等离子体质谱法(ICP-MS)测定,可以避免气动雾化器的堵塞。标准物质测定表明,样品粒径为6.8μm时,固体悬浮液进样仍然存在干扰,通过在固体悬浮液中加入少量氢氟酸和硝酸,对固体悬浮液进行改性,减小了固体悬浮液中固体颗粒粒径,从而减少了样品粒径的影响,可用ICP-MS测定土壤中锂铍钒铬镍铜锌铷锶镉铯钡铅等13个微量元素。经国家一级标准物质验证,本方法的最大相对误差在10.5%左右,多数元素的相对误差小于5%,相对标准偏差(RSD)小于5.4%(镉元素除外),满足了DZ/G 0130-2006质量控制要求。
-
关键词:
- 超细固体悬浮液 /
- 气动雾化器 /
- 电感耦合等离子体质谱法 /
- 土壤 /
- 微量元素
Abstract:BACKGROUNDSolid sampling technology applied in soil sample measurement has the limitation of sample size, and cannot be applied to the mainstream element analysis instrument. OBJECTIVESTo determine the trace elements by smashing soil samples to micron scale by high-speed grinding technology and under the action of a dispersant. METHODSThe ultra-fine grinding technology of soil samples was systematically studied. The sample was crushed to micron level in a few minutes in an ethanol medium. The prepared solid suspension was directly measured by ICP-MS, avoiding blockage of pneumatic atomizers. RESULTSThe determination of the reference materials shows that the solid suspension still has interference when the particle size is 6.8μm. By adding a small amount of hydrofluoric acid and nitric acid to modify the solid suspension, the solid particle size was reduced and thereby the impact of the sample size was reduced. The 13 trace elements of lithium, beryllium, vanadium, chromium, nickel, copper, zinc, rubidium, strontium, cadmium, cesium, barium and lead were successfully determined by ICP-MS. Accuracy experiment showed that the maximum relative error is 10.5%±3% and most of the elements have a relative error less than 5%. The precision experiment showed that most elements have a relative standard deviation (RSD) of less than 5.4%. CONCLUSIONSThe determination results meet the requirements of DZ/G 0130-2006 'Test of Geology and Mineral Resources Quality Management Standards'. -
表 1 土壤样品粉碎实验结果
Table 1. Grinding test of soil sample
粉碎条件 土壤样品累积占比对应的粒径(μm) 平均粒径
(μm)75% 85% 98% 干磨 20.7 33.8 54.3 14.1 水介质 6.93 9.46 17.5 4.58 乙醇介质 4.13 4.97 6.76 3.08 表 2 土壤固体悬浮液进样测定结果(标准溶液为校准工作曲线)
Table 2. Analytical results of soil slurry sampling (standard solution as a calibration curve)
元素 GBW07407 GBW07455 认定值
(×10-6)测定值
(×10-6)相对误差
(%)认定值
(×10-6)测定值
(×10-6)相对误差
(%)Li 19.5 7.11 63.5 31.0 11.5 62.8 Be 2.80 1.12 60.0 1.90 0.67 64.8 V 245 83.9 65.8 72.0 51.6 28.3 Cr 410 216 47.3 61.0 38.4 37.0 Ni 276 100 63.8 26.0 18.9 27.3 Cu 97.0 33.0 66.0 19.1 14.3 25.1 Zn 142 57.6 59.4 62.0 43.3 30.2 Rb 16.0 5.60 65.0 91.0 38.4 57.8 Sr 26.0 8.05 69.0 184 80.0 56.5 Cd 0.08 0.051 36.3 0.14 0.098 30.3 Cs 2.70 1.20 55.6 6.00 2.69 55.1 Ba 180 36.4 79.8 504 159 68.4 Pb 14.0 7.56 46.0 21.0 12.3 41.4 表 3 土壤固体悬浮液进样测定结果(校准标准曲线为标准物质悬浮液)
Table 3. Analytical results of soil slurry sampling (standard substance slurry as a calibration curve)
元素 GBW07426 GBW07430 标准值
(×10-6)测定值
(×10-6)相对误差
(%)允许误差
(%)标准值
(×10-6)测定值
(×10-6)相对误差
(%)允许误差
(%)Li 36.0 40.9 13.5 15.3 51.0 51.1 0.10 14.4 Be 2.04 2.25 10.3 24.3 3.80 3.75 1.20 22.1 V 86.0 94.5 9.90 13.1 105 102 2.50 12.7 Cr 59.0 66.4 12.5 14.0 67.0 68.4 2.10 13.7 Ni 32.0 32.9 2.90 15.6 27.4 24.1 12.0 16.0 Cu 29.0 31.0 6.90 15.8 32.0 31.0 3.20 15.6 Zn 78.0 86.8 11.3 13.3 100 101 1.30 12.8 Rb 94.0 107 13.9 12.9 173 178 2.60 11.5 Sr 240 334 39.3 10.9 68.0 59.5 12.5 13.7 Cd 0.15 0.17 13.3 30.0 0.25 0.30 20.0 30.0 Cs 7.20 8.11 12.6 19.9 13.9 14.5 4.40 17.9 Ba 492 488 0.90 9.40 411 372 9.40 9.80 Pb 19.0 21.5 13.0 17.0 61.0 57.5 5.70 13.9 表 4 GBW07407和GBW07455固体悬浮液加入氢氟酸及氢氟酸+硝酸混合酸测定结果
Table 4. Analytical results of GBW07407 and GBW07455 solid slurry with hydrofluoric acid and hydrofluoric acid+nitric acid
元素 GBW07407固体悬浮液 0.5mL氢氟酸 1.0mL氢氟酸 2.0mL氢氟酸 2.0mL氢氟酸+2.0mL硝酸 测定值
(×10-6)相对误差
(%)测定值
(×10-6)相对误差
(%)测定值
(×10-6)相对误差
(%)测定值
(×10-6)相对误差
(%)Li 20.2 3.59 19.5 0.00 19.3 1.03 20.1 3.08 Be 2.92 4.29 2.82 0.71 2.75 1.79 2.72 2.86 V 244 0.41 241 1.63 241 1.63 246 0.41 Cr 368 10.2 377 8.05 379 7.56 393 4.15 Ni 276 0.00 270 2.17 267 3.26 270 2.17 Cu 89.8 7.42 89.2 8.04 88.0 9.28 89.9 7.32 Zn 128 9.86 134 5.63 131 7.75 139 2.11 Rb 15.0 6.25 15.3 4.38 16.3 1.88 16.6 3.75 Sr 17.3 33.5 17.2 33.8 18.8 27.7 23.4 10.0 Cd 0.055 31.3 0.075 6.25 0.083 3.75 0.089 11.0 Cs 2.58 4.44 2.53 6.30 2.53 6.30 2.57 4.81 Ba 125 30.6 142 21.1 149 17.2 179 0.56 Pb 13.2 5.71 12.8 8.57 13.1 6.43 14.4 2.86 元素 GBW07455固体悬浮液 0.5mL氢氟酸 1.0mL氢氟酸 2.0mL氢氟酸 2.0mL氢氟酸+2.0mL硝酸 测定值
(×10-6)相对误差
(%)测定值
(×10-6)相对误差
(%)测定值
(×10-6)相对误差
(%)测定值
(×10-6)相对误差
(%)Li 29.2 5.81 27.8 10.3 28.6 7.74 29.3 5.48 Be 1.97 3.68 2.07 8.95 1.97 3.68 1.96 3.16 V 68.3 5.14 66.3 7.92 69.3 3.75 68.9 4.31 Cr 56.0 8.20 56.6 7.21 59.5 2.46 58.3 4.43 Ni 25.2 3.08 24.6 5.38 26.3 1.15 25.5 1.92 Cu 16.8 12.0 16.2 15.2 17.5 8.38 17.1 10.5 Zn 56.0 9.68 56.8 8.39 58.7 5.32 60.2 2.90 Rb 72.7 20.1 76.4 16.0 84.6 7.03 88.6 2.64 Sr 78.2 57.5 84.1 54.3 86.5 52.3 187 1.47 Cd 0.15 7.14 0.14 0.00 0.15 7.14 0.15 7.14 Cs 2.65 55.8 2.95 50.8 3.30 45.0 6.05 0.83 Ba 278 44.8 245 51.4 258 48.8 453 10.1 Pb 17.7 15.7 18.0 14.3 19.7 6.19 22.8 8.57 表 5 精密度实验
Table 5. Precision test of the method
测量次数 Li Be V Cr Ni Cu Zn Rb Sr Cd Cs Ba Pb 1 19.9 2.33 223 385 252 96.7 126 14.9 24.6 0.072 2.25 171 12.9 2 20.8 2.28 229 395 257 97.6 130 15.4 26.0 0.067 2.34 172 12.3 3 20.4 2.38 225 394 253 96.8 129 15.6 24.8 0.082 2.33 172 12.4 4 20.4 2.43 226 395 254 97.6 129 16.6 24.9 0.066 2.37 172 12.5 5 20.3 2.36 222 390 252 94.7 128 17.2 24.6 0.059 2.39 172 12.3 6 20.3 2.33 223 395 248 94.5 126 17.2 24.5 0.072 2.38 171 12.4 7 20.7 2.27 227 393 255 96.3 129 17.8 25.3 0.087 2.39 177 12.8 8 19.9 2.32 221 393 250 93.5 128 17.3 24.6 0.055 2.33 173 13.6 9 20.1 2.20 218 389 246 92.5 125 16.8 24.0 0.073 2.28 170 12.6 10 19.5 2.10 220 388 246 91.9 125 17.2 24.1 0.078 2.35 171 12.6 11 19.7 2.23 223 393 248 90.6 124 17.1 24.6 0.086 2.31 172 12.8 12 19.2 2.24 221 394 244 89.5 120 16.1 24.3 0.064 2.32 172 12.8 平均值(×10-6) 20.1 2.29 223 392 250 94.3 126 16.6 24.7 0.072 2.34 172 12.7 标准偏差(×10-6) 0.49 0.090 3.05 3.36 3.98 2.78 2.92 0.89 0.54 0.010 0.040 1.66 0.37 相对标准偏差(%) 2.43 3.89 1.37 0.86 1.59 2.95 2.31 5.35 2.19 14.19 1.84 0.97 2.92 -
[1] Bredy D V, Montalvo J, Glowacki J G.Direct deter-mination of zinc in sea-bottom sediments by carbon tube atomic absorption spectrometry[J].Analytica Chimica Acta, 1974, 70(2):448-452. doi: 10.1016/S0003-2670(01)85200-4
[2] 邓勃.电热原子吸收光谱分析中进样技术的进展(上)[J].现代仪器与医疗, 2009, 15(5):19. http://d.old.wanfangdata.com.cn/Periodical/xdyq200905001
Deng B.Advance of samplingtechnique in electrothermal atomic absorption spectrometry (Ⅰ)[J].Modern Instruments & Medical Treatment, 2009, 15(5):19. http://d.old.wanfangdata.com.cn/Periodical/xdyq200905001
[3] Ryszard D, Agnieszka M, Magdalena O, et al.Develop-ment of sensitive determination method for platinum in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry[J].Microchemical Journal, 2015, 121(7):18-24. http://cn.bing.com/academic/profile?id=cb0f9b3af41c325ef53d666940b846a7&encoded=0&v=paper_preview&mkt=zh-cn
[4] Peng Y, Wei G, Ping Z, et al.Heatassisted slurry sampling GFAAS method for determination of lead in food standard reference materials[J].Journal of Food Composition and Analysis, 2015, 42(9):78-83. http://cn.bing.com/academic/profile?id=61b7c0850f5320acdea8c140d056117d&encoded=0&v=paper_preview&mkt=zh-cn
[5] Husáková L, Urbanová I, Šafránková M.Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO2 interference by least-squares background correction[J].Talanta, 2017, 175(1):93-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=541578d0929d010b68dd15e63b21c027
[6] 张换平, 王书红, 张盼, 等.悬浮液进样石墨炉原子吸收光谱法测定茶叶中铜和铅的溶出率[J].理化检验(化学分册), 2017, 53(9):1078-1080. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201709020
Zhang H P, Wang S H, Zhang P, et al.The dissolution rate of copper and lead in tea determined by suspension sampling graphite furnace atomic absorption spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9):1078-1080. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201709020
[7] Camila K A, Patricia M K B, Vanessa E A, et al.Deter-mination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry:A case study for Brazilian yogurt[J].Food Chemistry, 2018, 240(1):268-274. https://www.researchgate.net/publication/318687464_Determination_of_Cu_Cd_Pb_and_Cr_in_Yogurt_by_Slurry_Sampling_Electrothermal_Atomic_Absorption_Spectrometry_A_Case_Study_for_Brazilian_Yogurt
[8] Daria G F, Vasilina V E, Vasilisa B B, et al.Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high resolution continuum source graphite furnace atomic absorption spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 140(2):14. http://cn.bing.com/academic/profile?id=581c92de5fdfa0d1a1447d66787cf1e2&encoded=0&v=paper_preview&mkt=zh-cn
[9] Rennan G O A, Nedio O, Roger T R, et al.Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry[J].Talanta, 2008, 77(1):400-406. doi: 10.1016/j.talanta.2008.06.047
[10] 卢桂萍, 汪正, 邱德仁.悬浮液进样石墨炉原子吸收光谱分析进展[J].光谱学与光谱分析, 2010, 30(8):2253-2259. doi: 10.3964/j.issn.1000-0593(2010)08-2253-07
Lu G P, Wang Z, Qiu D R.Research advance in slurry introduction for graphite furnace atomic absorption spectrometry[J].Spectroscopy and Spectral Analysis, 2010, 30(8):2253-2259. doi: 10.3964/j.issn.1000-0593(2010)08-2253-07
[11] 温晓华, 邵超英, 张琢, 等.悬浮液进样氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J].岩矿测试, 2007, 26(6):460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007 http://www.ykcs.ac.cn/article/id/ykcs_200706162
Wen X H, Shao C Y, Zhang Z, et al.Determinationof trace arsenic, antimony, selenium in soil samples by hydride generation atomic fluorescence spectrometry with slurry sample introduction[J].Rock and Mineral Analysis, 2007, 26(6):460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007 http://www.ykcs.ac.cn/article/id/ykcs_200706162
[12] Pedro R A, Raul A G, Susana M, et al.Slurry sampling in serum blood for mercury determination by CVAFS[J].Journal of Hazardous Materials, 2009, 161(1):1399-1403. http://cn.bing.com/academic/profile?id=a1cf5f64d33e25b87a1c46be0e142b8b&encoded=0&v=paper_preview&mkt=zh-cn
[13] Lin M L, Jiang S J.Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry[J].Food Chemistry, 2013, 141(3):2158-2162. doi: 10.1016/j.foodchem.2013.04.105
[14] Wan H H, Shiuh J J, Sahayam A C.Determination of Pd, Rh, Pt, Au in road dust by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J].Analytica Chimica Acta, 2013, 794(10):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91f691bba096a858f3f9cf75b3f3373a
[15] Sadiq N, Beauchemin D.Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice[J].Analytica Chimica Acta, 2014, 851(12):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a6e47cb48c3a6e81ec1ebcaa44ce98d
[16] Chien C C, Shiuh J J, Sahayam A C.Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature[J].Talanta, 2015, 131(1):585-589. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=403ad89eaaad1241ae3421dd926606a6
[17] Wei N C, Shiuh J J, Yen L C, et al.Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions[J].Analytica Chimica Acta, 2015, 860(2):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53f7baf58cf124b2e2666f124a0374f0
[18] Chia Y T, Shiuh J J, Sahayam A C.Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry[J].Food Chemistry, 2016, 192(1):274-279. http://cn.bing.com/academic/profile?id=b1a043084e53d8994f70224eb786e21f&encoded=0&v=paper_preview&mkt=zh-cn
[19] Xue J S, Taic H D, Peng R G, et al.Determination of Nb and Ta in Nb/Ta minerals by inductively coupled plasmas optical emission spectrometry using slurry sample introduction[J]. Microchemical Journal, 2006, 84(12):22-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48c28d0af13a0dbb784e8a247d4ed0f8
[20] Rafael A S, Nivaldo B, Solange C.Determination of elemental content in solid sweeteners by slurry sampling and ICPOES[J].Food Chemistry, 2011, 124(3):1264-1267. doi: 10.1016/j.foodchem.2010.07.059
[21] Geovani C B, Geraldo D M, Sergio L C F.Slurry sampling and high resolution continuum source flame atomic absorption spectrometry using secondary lines for the determination of Ca and Mg in dairy products[J].Microchemical Journal, 2011, 98(2):231-233. doi: 10.1016/j.microc.2011.02.005
[22] Fábio A C A, Vinicius C C, Erik G P S, et al.Multivariate optimization of simple procedure for determination of Fe and Mg in cassava starch employing slurry sampling and FAAS[J].Food Chemistry, 2017, 227(7):41-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f4e8b3cafc997441b7e56d2f889c9a2
[23] 毛雪飞, 刘霁欣, 王敏, 等.固体进样元素分析技术在农产品质量安全中的应用[J].中国农业科学, 2013, 46(16):3432-3443. doi: 10.3864/j.issn.0578-1752.2013.16.014
Mao X F, Liu J X, Wang M, et al.Applications of solid sampling analytical technologies of elements for quality and safety of agriproducts[J].Scientia Agricultura Sinica, 2013, 46(16):3432-3443. doi: 10.3864/j.issn.0578-1752.2013.16.014
[24] 周享春, 黄春华, 吴爱斌.脉冲悬浮体进样火焰原子吸收光谱法直接测定土壤中铬[J].理化检验(化学分册), 2001, 37(3):97-98. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx200103001
Zhou X C, Huang C H, Wu A B.Direct FAAS determination of trace amounts of chromium in soil by pulse slurry sampling[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2001, 37(3):97-98. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx200103001
[25] 张军烨, 汪正, 杜一平, 等.悬浮液进样电感耦合等离子体发射光谱中颗粒的输运和蒸发行为[J].分析化学, 2011, 39(5):658-663. http://www.cnki.com.cn/Article/CJFDTotal-FXHX201105015.htm
Zhang J Y, Wang Z, Du Y P, et al.Transportation and evaporation behavior of suspension particle for slurry nebulization introduction in inductively coupled plasma optical emission spectrometry[J].Chinese Journal of Analytical Chemistry, 2011, 39(5):658-663. http://www.cnki.com.cn/Article/CJFDTotal-FXHX201105015.htm
[26] Xiang Q G, Hu B, Jiang C Z, et al.A comparison of slurry sampling electrothermal vaporization and slurry nebulization inductively coupled plasma mass spectrometry for the direct determination of trace impurities in titanium dioxide powder[J].Journal of Mass Spectrometry, 2006, 41(10):1378-1385. doi: 10.1002/(ISSN)1096-9888