Hydrogen-Oxygen-Sulfur Isotope Composition of Shihoushan Pyrite and Tungsten Polymetallic Deposit, Southern Jiangxi
-
摘要: 狮吼山硫铁-钨多金属矿床位于银坑-青塘整装勘查区北部,是赣南地区唯一大型硫铁矿床。磁黄铁矿-黄铁矿(-黄铜矿-白钨矿)矿体赋存于石炭系梓山组上段地层中含铁、含钙层位,主要形成于石英-硫化物阶段。本文通过分析原生矿石矿物中H-O-S同位素组成特征,结合Pb同位素和成矿年代测试结果,探讨成矿流体来源及成矿演化过程。矿石硫化物中δ34S组成特征(-5.50‰~-0.20‰,集中于-3.0‰~0.0‰)显示,硫源以岩浆硫为主,较宽的变化范围预示成矿流体遭受了叠加和改造作用。δD-δ18O同位素组成主要集中于岩浆水与变质水重叠区域(δD=-74.4‰~-48.0‰,δ18OH2O=3.76‰~10.86‰),说明成矿流体以岩浆水和变质水为主,后期有少量的天水混入。综合分析认为,该矿床成矿流体主要来自深部岩浆水,岩浆热液与含钙地层的接触交代作用形成大规模变质流体,再加上少量的天水混入,流体间的不混溶作用使成矿物质在岩体与含钙层位接触部位富集沉淀,形成热液充填交代型矿床。
-
关键词:
- 硫铁-钨多金属矿床 /
- H-O-S同位素 /
- 成矿流体演化 /
- 岩浆期后热液充填交代型矿床 /
- 赣南
Abstract:BACKGROUNDShihoushan Pyrite and Tungsten polymetallic deposit, located in the northern of Yinkeng-Qingtang Au-Ag polymetallic integrated exploration area, is the only large pyrite deposit in southern Jiangxi. The pyrrhotite-pyrite (-chalcopyrite-scheelite) orebody hosts in calciferous sandstone in the Zishan Formation of Carboniferous System, mainly formed in the quartz-sulfide stage. OBJECTIVESIn order to better understand the ore-forming material source and the evolution processes of Shihoushan deposit, the primary ores were selected as laboratory raw materials for stable isotope testing. METHODSH-O-S isotope composition of primary ore minerals was analyzed combined with the Pb isotope and metallogenic age results. The ore-forming fluid source and ore-forming evolution process are discussed. RESULTSThe δ34S values range from -5.50‰ to -0.20‰, which are mainly concentrated at -3.0‰-0.0‰ (n=11), show the typical signature of mantle S. The wide range of variation indicates that the ore-forming fluid has been subjected to superposition and modification. H-O isotope analyses show that δD=-74.4‰--48.0‰ (n=9), δ18OH2O=3.76‰-10.86‰ (n=9), indicating that the ore-forming fluid is composed mainly of magmatic water and metamorphic water, with minor meteoric water. CONCLUSIONSAccording to the comprehensive analysis, the ore-forming fluid of this deposit mainly comes from deep magmatic water. The contact between magmatic hydrothermal fluid and calcium-bearing strata forms a large-scale metamorphic fluid, mixed with a small amount of meteoric water. The fluid immiscibility makes the ore-forming materials precipitate in the contact between the rock mass and the calcium-bearing strata, forming a hydrothermal filling and metasomatic deposit. -
图 3 狮吼山硫铁多金属矿床成矿流体氢氧同位素组成图解(底图据路远发[22])
Figure 3.
表 1 狮吼山硫铁多金属矿床矿石硫化物的硫同位素组成
Table 1. Sulfur isotopic compositions of ore sulfides from the Shihoushan pyrite polymetallic deposit
样品编号 采样对象 测试矿物 采样位置 δ34SVCDT(‰) 数据来源 KD-b1 致密块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -1.99 KD-b2 致密块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -0.87 本文 KD-b4 团块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -1.18 SHS-05 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -1.30 SHS-06 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -2.50 文献[10] SHS-07 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -2.10 SHS2#-5 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -1.90 SHS2#-2 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -0.20 SHS2#-6a 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -2.10 文献[10] SHS3#-2 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -5.20 SHS3#-3 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -5.50 表 2 狮吼山硫铁多金属矿床氢氧同位素组成
Table 2. Hydrogen and oxygen isotopic compositions of the Shihoushan pyrite polymetallic deposit
样品编号 矿石类型 测试矿物 采样位置 δDv-SNOW(‰) δ18Ov-pdb(‰) δ18Ov-SNOW(‰) t(℃) δ18OH2O(‰) 数据来源 KD-b4 团块状磁黄铁矿 石英 160中段V1 -74.4 -21.5 8.8 360 3.76 Shs-Q01 团块状磁黄铁矿 石英 160中段V1 -69.0 -18.7 11.6 360 6.56 Shs-Q02 团块状磁黄铁矿 石英 160中段V1 -71.3 -17.1 13.3 360 8.26 本文 Shs-Q03 团块状磁黄铁矿 石英 160中段V1 -63.7 -17.5 12.8 360 7.76 Shs-Q05 团块状磁黄铁矿 石英 160中段V1 -66.3 -14.5 15.9 360 10.86 SHS2#-2 团块状磁黄铁矿 石英 160中段V11 -55.0 / 9.4 360 4.36 SHS2#-4 团块状磁黄铁矿 石英 160中段V11 -49.0 / 13 360 7.96 文献[10] SHS2#-5 团块状磁黄铁矿 石英 160中段V11 -57.0 / 11.5 360 6.46 SHS3#-1 团块状磁黄铁矿 石英 160中段V11 -48.0 / 13.7 360 8.66 表 3 不同成因类型的硫铁矿床成矿流体特征对比
Table 3. Camparison of characteristics of ore fluids from different type pyrite deposits
特征 原生岩浆硫铁 变质流体 硫铁矿床 骆驼山式硫铁矿 向山式硫铁矿 狮吼山式硫铁矿 包裹体类型 液相和含子矿物包裹体 气液包裹体和CO2包裹体 液相为主,少量为气相CO2包裹体 液相包裹体 富气相包裹体和含子晶包裹体 流体体系 H2O-NaCl H2O-NaCl±CO2±CH4 H2O-NaCl-CO2 H2O-NaCl H2O-NaCl±CO2 温度(℃) >400 >200 370~520 90~270 180~500 盐度(wt%NaCl) 变化范围大 一般中低盐度 早期低→晚期高 8.01~21.1 1.05~4.24 δ34S(‰) -3~5 -20~22 0.24~6.46 10~23 -5.50~1.68 δ18O水(‰) 5~7 -16~25 -0.03~1.93 -11.01~1.60 3.76~10.86 δ18D水(‰) -80~-50 -140~-20 -85‰~-80‰ -51.6~-72.0 -74.4~-48.0 流体来源 岩浆水 变质水 以岩浆流体为主,晚期混入大气水 大气降水和热卤水 岩浆水与变质水混合成矿,晚期混入大气水 成矿类型 / / 岩浆热液交代型 热水沉积型 岩浆期后热液充填交代型 数据来源 徐兆文等[21]和张德会等[14] 徐兆文等[21]和张德会等[14] 梁新辉[23]和邢矿[24] 熊先孝等[25] 本文和赵正[10] -
[1] 王登红, 陈毓川, 陈郑辉, 等.南岭地区矿产资源形势分析和找矿方向研究[J].地质学报, 2007, 81(7):882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002
Wang D H, Chen Y C, Chen Z H, et al.Assessment on mineral resource in Nanling Region and suggestion for further prospecting[J].Acta Geologica Sinica, 2007, 81(7):882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002
[2] 王臻, 赵芝, 邹新勇, 等.赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究[J].岩矿测试, 2018, 37(1):96-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201710160167
Wang Z, Zhao Z, Zou X Y, et al.Petrogeochemical characteristics and metallogenetic potential of epimetamorphic rock in South Jiangxi Province[J].Rock and Mineral Analysis, 2018, 37(1):96-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201710160167
[3] 陈毓川, 陈郑辉, 曾载淋, 等.南岭科学钻探第一孔选址研究[J].中国地质, 2013, 40(3):659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001
Chen Y C, Chen Z H, Zeng Z L, et al.Research on the site selection of Nanling scientific drilling-1[J].Geology in China, 2013, 40(3):659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001
[4] 曾载淋.南岭东段银坑地区主要金属矿产成矿规律研究与深部找矿探索[D].北京: 中国地质科学院, 2012.
Zeng Z L.Mineralization Regularity and Deep Prospecting of the Yinkeng Area in the East Nanling Metallognic Belt[D].Beijing: Chinese Academy of Geological Sciences, 2012.
[5] Feng C Y, Li D X, Zeng Z L, et al.Mineralization styles and genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn polymetallic orefield, Southern Jiangxi Province, SE China:Evidence from geology, fluid inclusions, isotopes and chronology[J].Acta Geologica Sinica, 2014, 88(3):825-844. doi: 10.1111/acgs.2014.88.issue-3
[6] 李伟, 刘翠辉, 贺根文, 等.赣南银坑矿田土壤与汞气地球化学特征与成矿预测[J].矿物岩石地球化学通报, 2016, 35(6):1195-1202. doi: 10.3969/j.issn.1007-2802.2016.06.010
Li W, Liu C H, He G W, et al.Geochemical anomalies and metallogenic prediction in the Yinkeng ore field, Southern Jiangxi[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6):1195-1202. doi: 10.3969/j.issn.1007-2802.2016.06.010
[7] 赵正, 陈毓川, 曾载淋, 等.江西银坑W-Ag-Au多金属矿田成矿规律与找矿方向:兼论华南两个成矿系列叠加问题[J].地学前缘, 2017, 24(5):54-61. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705006
Zhao Z, Chen Y C, Zeng Z L, et al.Jiangxi Yinkeng W-Ag-Au ore field's metallogenic regularity and prospecting direction:As well as the superposition of two metallogenic series in Southern China[J].Earths Science Frontiers, 2017, 24(5):54-61. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705006
[8] Zhao Z, Zhou X P, Guo N X, et al.Superimposed W and Ag-Pb-Zn(-Cu-Au) mineralization and deep prospec-ting:Insight from a geophysical investigation of the Yinkeng orefield, South China[J].Ore Geology Reviews, 2018, 93:404-412. doi: 10.1016/j.oregeorev.2018.01.017
[9] 梁景时, 漆富勇, 范会虎, 等.江西省宁都县青塘硫铁矿床地质特征及成因探讨[J].西部探矿工程, 2014(6):169-173. doi: 10.3969/j.issn.1004-5716.2014.06.055
Liang J S, Qi F Y, Fan H H, et al.Geological characteristics and genesis of Qingtang pyrite deposits in Ningdu, Jiangxi[J].West-China Exploration Engineering, 2014(6):169-173. doi: 10.3969/j.issn.1004-5716.2014.06.055
[10] 赵正.南岭东段银坑矿田构造-岩浆活动与成矿规律研究[D].北京: 中国地质科学院, 2012: 124-136.
Zhao Z.Tectono-Magmatic Activity and Mineralization Regularity of Yinkeng Ore-field in the East Nanling Metallognic Belt[D].Beijing: Chinese Academy of Geological Sciences, 2012: 124-136.
[11] Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology, 1972, 67(5):551-578. doi: 10.2113/gsecongeo.67.5.551
[12] 陕亮, 郑有业, 许荣科, 等.硫同位素示踪与热液成矿作用研究[J].地质与资源, 2009, 18(3):197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007
Shan L, Zheng Y Y, Xu R K, et al.Review on sulfur isotopic tracing and hydrothermal metalogenesis[J].Geology and Resources, 2009, 18(3):197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007
[13] 王艳娟, 胡援越, 申俊峰, 等.太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J].现代地质, 2011, 25(5):846-852. doi: 10.3969/j.issn.1000-8527.2011.05.003
Wang Y J, Hu Y Y, Shen J F, et al.Sulfur and lead isotope composition and tracing for sources of ore-forming materials in Beiming River iron deposits, Sourthern Taihang Mountains[J].Geoscience, 2011, 25(5):846-852. doi: 10.3969/j.issn.1000-8527.2011.05.003
[14] 张德会, 金旭东, 毛世德, 等.成矿热液分类兼论岩浆热液的成矿效率[J].地学前缘, 2011, 18(5):90-102. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105010
Zhang D H, Jin X D, Mao S D, et al.The classification of ore-forming fluid and the efficiency of ore formation of magmatic hydrothermal solution[J].Earth Science Fronties, 2011, 18(5):90-102. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105010
[15] 郭春影, 张文钊, 葛良胜, 等.氢氧同位素体系成矿流体示踪若干问题[J].矿物岩石, 2011, 31(3):41-47. doi: 10.3969/j.issn.1001-6872.2011.03.007
Guo C Y, Zhang W Z, Ge L S, et al.Several questions on tracing ore forming fluid by using hydrogen and oxygen isotope system[J].Journal of Mineralogy and Peteology, 2011, 31(3):41-47. doi: 10.3969/j.issn.1001-6872.2011.03.007
[16] Zhou J X, Huang Z L, Bao G P, et al.Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China[J].Journal of Earth Science, 2013, 24(5):759-771. doi: 10.1007/s12583-013-0372-8
[17] Chaussidon M, Lorand J P.Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France):An ion microprobe study[J].Geochimica et Cosmochimica Acta, 1990, 54(10):2835-2846. doi: 10.1016/0016-7037(90)90018-G
[18] 陈杰, 段士刚, 张作衡, 等.新疆西天山式可布台铁矿地质、矿物化学和S同位素特征及其对矿床成因的约束[J].中国地质, 2014, 41(6):1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006
Chen J, Duan S G, Zhang Z H, et al.Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang:Constraints on genesis of the deposit[J].Geology in China, 2014, 41(6):1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006
[19] 燕长海, 刘国印.豫西南铅锌多金属矿控矿条件及找矿方向[J].地质通报, 2004, 23(11):1143-1148. doi: 10.3969/j.issn.1671-2552.2004.11.016
Yan C H, Liu G Y.Metallogenic characteristics and ore-prospecting suggestions of lead-zinc polymetallic deposits in Southwestern Henan Province of China[J].Geological Bulletin of China, 2004, 23(11):1143-1148. doi: 10.3969/j.issn.1671-2552.2004.11.016
[20] 李占轲.华北克拉通南缘中生代银-铅-锌矿床成矿作用研究[D].北京: 中国地质大学, 2013: 30-31.
http://cdmd.cnki.com.cn/Article/CDMD-10491-1013354258.htm Li Z K.Metallogenesis of the Silver-Lead-Zinc Deposits along the Southern Margin of the North China Craton[D].Beijing: China University of Geoscience, 2013: 30-31.
[21] 徐兆文, 方长泉, 蒋少涌, 等.安徽青阳峙门口层状硫铁矿矿床地质特征及成因研究[J].地质找矿论丛, 2006, 21(1):10-14. doi: 10.3969/j.issn.1001-1412.2006.01.002
Xu Z W, Fang C Q, Jiang S Y, et al.Study on geological characteristics and genesis of stratified pyritic deposit in Shimenkou, Anhui Province[J].Contributions to Geology and Mineral Resources, 2006, 21(1):10-14. doi: 10.3969/j.issn.1001-1412.2006.01.002
[22] 路远发.Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
Lu Y F.Geokit-A geochemical toolkit for Microsoft excel[J].Geochimica, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
[23] 梁新辉.东秦岭骆驼山多金属硫铁矿地质特征与控矿模式探讨[D].北京: 中国地质大学, 2015: 40-42.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1015385564.htm Liang X H.Geological Characteristics of the Luotuoshan Polymetallic Pyrite Deposit and Its Ore-controlling Model in Eastern Qinling, China[D].Beijing: China University of Geoscience, 2015: 40-42.
[24] 邢矿.豫西南栾川群地层特征及其与铅锌矿成矿关系研究[D].北京: 中国地质大学, 2005: 45-52.
http://cdmd.cnki.com.cn/Article/CDMD-11415-2005155143.htm Xing K.Study on the Stratigraphic Characters of the Luanchuan Group and the Relation to Pb-Zn Deposit Mineralization in the Southwest of Henan Province[D].Beijing: China University of Geoscience, 2005: 45-52.
[25] 熊先孝, 姚超美.宁芜向山式硫铁矿地质及矿床成因新探[J].化工矿产地质, 2001, 23(2):93-100. doi: 10.3969/j.issn.1006-5296.2001.02.005
Xiong X X, Yao C M.New thoughts on formation of Xiangshan-type pyrite deposit in Nanjing-Wuhu region[J].Geology of Chemical Minerals, 2001, 23(2):93-100. doi: 10.3969/j.issn.1006-5296.2001.02.005