Surface Modification of Natural Mordenite and Its Application in Removal of Heavy Metals from Aqueous Solution
-
摘要: 天然丝光沸石作为一种绿色廉价多孔材料广泛应用于环境治理中去除重金属,目前报道的天然沸石对重金属的去除率多在60%~90%,提升其去除效率已成为研究热点。本文采用正硅酸乙酯对天然丝光沸石进行表面重构改性,通过TEM、XRD、BET等手段表征其形貌和结构。结果表明:正硅酸乙酯水解生成的SiO2可与天然丝光沸石复合形成新颖的"SiO2/丝光沸石",原沸石表面包覆了新生纳米SiO2孔结构,同时没有损坏原始沸石的多孔结构,使改性沸石材料兼具了天然丝光沸石和纳米SiO2孔结构优点,增强了对重金属离子的吸附能力。该改性材料对水中Pb2+、Cd2+、Zn2+和Mn2+的最高吸附率为99.3%、97.1%、98.3%和97.0%,且极少解吸,性能稳定。考虑经济成本并保证合适吸附率的情况下选择吸附效率最佳的投加量,得到改性材料对初始浓度10 mg/L的Pb2+、Cd2+、Zn2+、Mn2+溶液的最佳投加量分别为0.5 g/L、2 g/L、2 g/L、5 g/L,可为中试和规模应用提供参考。较之焙烧、酸、碱、盐和有机改性,本改性方式对多种重金属均有高的吸附率,并显现出操作简便、成本低和环境友好等优势,具有较好应用前景。Abstract:
BACKGROUNDNatural mordenite is widely used as a green and cheap porous material to remove heavy metals in environmental treatment. Currently, the removal rate of heavy metals by natural zeolites is from 60% to 90%, and improving its removal efficiency has been a hot topic. OBJECTIVESTo reconstruct and modify natural mordenite by tetraethyl orthosilicate, and determine its effect on the removal of heavy metals in water. METHODSThe morphology and structure of the modified mordenites were characterized by TEM, XRD and BET. RESULTSThe SiO2 hydrolyzed by tetraethyl orthosilicate can be combined with natural mordenite to form a new 'SiO2/mordenite'. The surface of the original mordenite is coated with the pore structure of the new nano-SiO2 without damaging the porous structure of the original mordenite. The modified mordenite combines the advantages of natural mordenite and nano-SiO2 pore structure, enhancing the adsorption of heavy metal ions. The highest adsorption rate of modified mordenite for Pb2+, Cd2+, Zn2+, and Mn2+ was 99.3%, 97.1%, 98.3%, and 97.0%, respectively. The modified mordenites were minimally desorbed during the entire process and have stable performance. Considering the cost and the appropriate adsorption rate, the best dosage of adsorption efficiency is selected. The optimal dosage of Pb2+, Cd2+, Zn2+ and Mn2+ solutions for the initial concentration of 10 mg/L is 0.5, 2, 2 and 5 g/L, respectively. It can provide a reference for a pilot experiment and scale applications. CONCLUSIONSCompared with roasting, acid, alkali, salt and organic modification, this modification method has a high adsorption rate for a variety of heavy metals, and shows the advantages of simple operation, low cost and environmental friendliness, making it a good application prospect. -
Key words:
- natural mordenites /
- silica /
- surface modification /
- heavy metals /
- adsorption
-
表 1 不同天然沸石改性方法吸附去除水溶液中重金属效果比较
Table 1. Comparison of adsorption capacity of different modified methods of zeolites for removal of heavy metals from aqueous solution
天然沸石改性方法 改性过程或主要步骤 改性材料投加量 吸附率 参考文献 焙烧改性 沸石300℃焙烧1.5 h 10 g/L Pb:98%
Co:40%[26] 盐酸改性 10%盐酸浸泡24 h,再去离子水冲洗,105℃烘干 100 g/L Pb:95% [27] 氢氧化钠改性 2 mol/L氢氧化钠溶液浸泡,室温振荡2.5 h,抽滤,冲洗至中性,烘干 10 g/L Cd:99% [28] 氢氧化钠改性 2 mol/L氢氧化钠溶液浸泡,室温振荡2.5 h,抽滤,冲洗至中性,烘干 5 g/L Zn:95%
Cd:97%[29] 氯化钠改性 2 mol/L氯化钠溶液浸泡24 h,烘干 1 g/L Pb:90%
Cd:90%
Ni:90%[30] 硫酸/硫酸铜复合改性 1 mol/L硫酸浸泡10 h后洗净,105℃下烘干,再1 mol/L硫酸铜溶液浸泡10 h,105℃下烘干 40 g/L Cr:94% [31] 接枝氨基 沸石先酸碱活化,后与3-氨丙基三甲氧基硅烷混合于甲苯中80℃搅拌24 h,洗涤,干燥 Ni:1 g/L
Cu:1 g/L
Zn:1.6 g/L
Pb:0.6 g/LNi:90%
Cu:20%
Zn:34%
Pb:90%[25] 本研究
(正硅酸乙酯表面改性)沸石粉末与硅酸-乙酯溶液在乙醇中常温搅拌5 h,洗涤,烘干 Pb:0.5 g/L
Zn、Cd:2 g/L
Mn:5 g/LPb:99.3%
Cd:97.1%
Zn:98.3%
Mn:97.0%本研究 -
[1] Li Z Y, Ma Z W, van Der Kuijp T J, et al.A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J].Science of the Total Environment, 2014, 468:843-853. http://europepmc.org/abstract/med/24076505
[2] Li H X, Ji H B, Shi C J, et al.Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health[J].Chemosphere, 2017, 172:505-515. doi: 10.1016/j.chemosphere.2017.01.021
[3] Xu C, Zhou P J, Li H Y, et al.Contamination and spatial distribution of heavy metals in soil of Xiangxi River water-level-fluctuating zone of the Three Gorges Reservoir, China[J].Human and Ecological Risk Assessment, 2017, 23(4):851-863. doi: 10.1080/10807039.2017.1288562
[4] Jia Y Y, Wang L, Qu Z P, et al.Distribution, contamin-ation and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China[J].Environmental Science and Pollution Research, 2018, 25(7):7012-7020. doi: 10.1007/s11356-017-1068-x
[5] Momodu M A, Anyakora C A.Heavy metal contamination of ground water:The surulere case study[J].Research Journal of Environmental & Earth Sciences, 2010, 2(1):39-43. http://www.cabdirect.org/abstracts/20103253931.html
[6] Ferati F, Kerolli-Mustafa M, Kraja-Ylli A.Assessment of heavy metal contamination in water and sediments of Trepca and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis[J].Environmental Monitoring and Assessment, 2015, 187(6):DOI10.1007/s10661-015-4524-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16f34c4be028c1b657a931a9e2e75ead
[7] Kastyuchik A, Karam A, Aïder M.Effectiveness of alkaline amendments in acid mine drainage remediation[J].Environmental Technology & Innovation, 2016, 6:49-59. http://www.sciencedirect.com/science/article/pii/S2352186416300244
[8] Zhao Y N.Review of the natural, modified, and synthetic zeolites for zeavy metals removal from wastewater[J].Environmental Engineering Science, 2016, 33(7):443-454. doi: 10.1089/ees.2015.0166
[9] Son E B, Poo K M, Chang J S, et al.Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass[J].Science of the Total Environment, 2018, 615:161-168. doi: 10.1016/j.scitotenv.2017.09.171
[10] Rahman M M, Adil M, Yusof A M, et al.Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells[J].Materials (Basel), 2014, 7(5):3634-3650. doi: 10.3390/ma7053634
[11] Hizal J, Tutem E, Guclu K, et al.Heavy metal removal from water by red mud and coal fly ash:An integrated adsorption-solidification/stabilization process[J].Desalination and Water Treatment, 2013, 51(37-39):7181-7193. doi: 10.1080/19443994.2013.771289
[12] Cao J S, Wang C, Fang F, et al.Removal of heavy metal Cu(Ⅱ) in simulated aquaculture wastewater by modified palygorskite[J].Environmental Pollution, 2016, 219:924-931. doi: 10.1016/j.envpol.2016.09.014
[13] 谭科艳, 王喆, 蔡敬怡, 等.地球化学工程技术修复江西某Pb超标耕地的应用[J].地球学报, 2017, 38(6):953-960. http://d.old.wanfangdata.com.cn/Periodical/dqxb201706010
Tan K Y, Wang Z, Cai J Y, et al.The application of geochemical engineering technology to the remediation of a Pb-polluted abandoned farmland in Jiangxi Province[J].Acta Geoscientica Sinica, 2017, 38(6):953-960. http://d.old.wanfangdata.com.cn/Periodical/dqxb201706010
[14] Ciosek A L, Luk G K.Kinetic modelling of the removal of multiple heavy metallic ions from mine waste by natural zeolite sorption[J].Water, 2017, 9(7):DOI:10.3390/w9070482.
[15] Inglezakis V J, Fyrillas M M, Stylianou M A.Two-phase homogeneous diffusion model for the fixed bed sorption of heavy metals on natural zeolites[J].Microporous and Mesoporous Materials, 2018, 266:164-176. doi: 10.1016/j.micromeso.2018.02.045
[16] Reeve P J, Fallowfield H J.Natural and surfactant modi-fied zeolites:A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms[J].Journal of Environmental Management, 2018, 205:253-261.
[17] Wen J, Yi Y J, Zeng G M.Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J].Journal of Environmental Management, 2016, 178:63-69. doi: 10.1016/j.jenvman.2016.04.046
[18] Mulyati S, Arahman N, Syawaliah, et al.Removal of Me-tal Iron from Groundwater Using Aceh Natural Zeolite and Membrane Filtration[C]//Proceedings of 1st Annual Applied Science and Engineering Conference (Aasec), 2017.
[19] Tran H N, Viet P V, Chao H P.Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds[J].Ecotoxicology and Environmental Safety, 2018, 147:55-63. doi: 10.1016/j.ecoenv.2017.08.027
[20] Liu Y, Lou Z M, Sun Y, et al.Influence of complexing agent on the removal of Pb(Ⅱ) from aqueous solutions by modified mesoporous SiO2[J].Microporous and Mesoporous Materials, 2017, 246:1-13. doi: 10.1016/j.micromeso.2017.03.005
[21] Zendehdel M, Shoshtari-Yeganeh B, Cruciani G.Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization[J].Journal of the Iranian Chemical Society, 2016, 13(10):1915-1930. doi: 10.1007/s13738-016-0908-9
[22] Kim S A, Kamala-Kannan S, Oh S G, et al.Simultaneous removal of chromium(Ⅵ) and Reactive Black 5 using zeolite supported nano-scale zero-valent iron composite[J].Environmental Earth Sciences, 2016, 75(5):447. doi: 10.1007/s12665-015-4855-z
[23] Lin J, Zhan Y.Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites[J].Chemical Engineering Journal, 2012, 200-202:202-213. doi: 10.1016/j.cej.2012.06.039
[24] 吴昆明, 郭华明, 魏朝俊.改性磁铁矿对水体中砷的吸附特性研究[J].岩矿测试, 2017, 36(6):624-632. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709110147
Wu K M, Guo H M, Wei C J.Adsorption characteristics of arsenic in water by modified magnetite[J].Rock and Mineral Analysis, 2017, 36(6):624-632. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709110147
[25] 石太宏, 吕灿, 左莉娜.硅烷化改性沸石对重金属离子的吸附性能[J].环境工程学报, 2013, 7(3):1045-1052. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201303043
Shi T H, Lü C, Zuo L N.Adsorption of heavy metal ions by silylation modified zeolite[J].Chinese Journal of Environmental Engineering, 2013, 7(3):1045-1052. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201303043
[26] 易发成.沸石的活化处理及其对铅、钴的吸附性研究[J].矿物岩石, 2005, 25(3):118-121. doi: 10.3969/j.issn.1001-6872.2005.03.026
Yi F C.The activation treatment and Pb2+, Co2+ ions adsorption capability of zeolite[J].Journal of Mineralogy and Petrology, 2005, 25(3):118-121. doi: 10.3969/j.issn.1001-6872.2005.03.026
[27] 郝鹏飞, 梁靖, 钟颖.改性沸石对含铅废水的处理研究[J].环境科学与管理, 2009, 34(6):106-108. doi: 10.3969/j.issn.1673-1212.2009.06.031
Hao P F, Liang J, Zhong Y.The research of modified zeolite to the disposal of leaded wastewater[J].Environmental Science and Management, 2009, 34(6):106-108. doi: 10.3969/j.issn.1673-1212.2009.06.031
[28] 陈溪, 崔天顺, 邓晓军, 等.改性沸石对镉(Ⅱ)的交换性能研究[J].工业安全与环保, 2015, 41(4):55-57. doi: 10.3969/j.issn.1001-425X.2015.04.018
Chen X, Cui T S, Deng X J, et al.Research on the Cd2+ ion exchange by modified zeolite[J].Industrial Safety and Environmental Protection, 2015, 41(4):55-57. doi: 10.3969/j.issn.1001-425X.2015.04.018
[29] 李蘅, 张静, 徐文炘, 等.沸石处理选矿重金属废水初步研究[J].矿产与地质, 2015, 29(5):682-687. doi: 10.3969/j.issn.1001-5663.2015.05.025
Li H, Zhang J, Xu W X, et al.A preliminary study on treatment of heavy metal beneficiation wastewater by zeolite[J].Mineral Resources and Geology, 2015, 29(5):682-687. doi: 10.3969/j.issn.1001-5663.2015.05.025
[30] Maretto M, Bianchi F, Vignola R, et al.Microporous and mesoporous materials for the treatment of wastewater produced by petrochemical activities[J].Journal of Cleaner Production, 2014, 77:22-34. doi: 10.1016/j.jclepro.2013.12.070
[31] 文叶轩, 郝硕硕, 朱家亮, 等.天然和改性沸石对铬吸附特征研究[J].中国陶瓷, 2015, 51(7):16-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTC201507005.htm
Wen Y X, Hao S S, Zhu J L, et al.Research on adsorption characteristics of chromium on natural and modified zeolite[J].China Ceramics, 2015, 51(7):16-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTC201507005.htm