Study on the Infrared Spectral Characteristics of H2OⅠ-type Emerald and the Controlling Factors
-
摘要: 祖母绿红外吸收主要与其硅氧骨干、通道内结构水、相关碱性金属离子和大分子振动有关。国内外相关研究主要集中在峰位归属及谱峰特征对比方面,认为与分子振动和不同类型结构水相关,对更深层的成矿或化学控制因素的研究还较少。本文选取典型4个矿区样品,针对贫碱结构水(Ⅰ型)特征为主的祖母绿进行了近、中红外光谱测定,在此基础上初步探讨其主要控制因素。结果表明:同为Ⅰ型水主控的不同矿区祖母绿呈现一致特征,若干与结构水、碱性离子及大分子相关吸收具有稳定峰位、近似的相对峰强和峰形的特征。分析发现:祖母绿红外谱带特征直接受控于通道中结构水的占位方向和比例,进一步与祖母绿成矿元素Al3+的类质同象替换相关,主要受(Mg2++Fe2+)离子浓度影响,当其浓度较低时,类质同象替换程度较低,祖母绿结构水占位主要表现为Ⅰ型水特征,其相关元素特征表现为高Si、Al,低Mg、Fe,总体贫碱,对应相应的典型红外特征,指示化学离子浓度与红外谱学特征之间的关系。研究过程表明红外光谱可以辅助对Ⅰ型水祖母绿产地的鉴定和成矿环境的认知。
-
关键词:
- 祖母绿 /
- 红外光谱 /
- Ⅰ型水 /
- 类质同象替换 /
- (Mg2++Fe2+)离子浓度
Abstract:BACKGROUNDThe infrared absorption mechanism is mainly related to the Si-O lattice, channel structure water, other alkaline metal cations, and vibration of molecules. Relevant research at home and abroad focuses mainly on peak position attribution and spectral peak feature comparison. It is considered that molecular vibration is related to different types of structural water. However, there are few studies on deeper mineralization or chemical controlling factors. OBJECTIVESTo unravel the controlling factors of H2OⅠ-type infrared spectral characteristics. METHODSThe typical H2OⅠ-type natural emeralds were collected from 4 mining areas, including the Eastern Cordillera mountains in Colombia (EC), the Panjshir valley in Afghanistan(P), the Ural mountains in Russia(U), and the Kaduna/Plateau state in Nigeria (KP). The samples were analyzed by Fourier Transformed Infrared Spectrometer (FTIR). The typical H2OⅠ-type infrared (IR) spectral characteristics and their controlling factors were studied. The chemical composition data were obtained from the EMPA analyses. RESULTSThe results show that the spectral characteristics of H2O Ⅰ-type emeralds from different mining areas share a consistent pattern. Several absorptions related to structural water, basic ions and macromolecules had stable peak positions, approximately similar relative peak intensities and peak shapes. As the analysis proved, the H2OⅠIR spectra were first directly controlled by the mixed ratio of the two types of the structure water in the channel, and further related to the substitution of Al3+, chemically controlled by the (Mg2++Fe2+) concentration in the ore fluids. When the concentration of (Mg2++Fe2+) was low, the degree of isomorphic substitution was lower, and the emerald structure water was mainly characterized by Ⅰ-type water. The related elements were characterized by high Si and Al but low Mg and Fe, corresponding to the typical infrared characteristics, indicating the relationship between chemical ion concentration and infrared spectral characteristics. CONCLUSIONSThe research process showed that Infrared Spectroscopy could assist in the identification of Ⅰ-type water emerald production discrimination and the understanding of the metallogenic environment. -
表 1 祖母绿测试样品的常规特征
Table 1. General characteristics of the testing samples
样品编号 产地 矿区 质量
(ct)尺寸
(mm×mm×mm)颜色 形状 Em0014 哥伦比亚 东科迪勒拉山系 0.66 5.44×4.55×4.35 绿 刻面 Em0015 哥伦比亚 东科迪勒拉山系 1.42 10.14×3.88×3.68 浅绿(蓝) 柱状晶体 Em0016 哥伦比亚 东科迪勒拉山系 1.45 10.92×6.58×2.32 浅绿(蓝) 晶体 Em0017 哥伦比亚 东科迪勒拉山系 0.94 9.9×5.30×1.96 绿(蓝) 柱状晶体 Em0018 哥伦比亚 东科迪勒拉山系 2.15 9.94×9.56×2.84 浅绿-绿(黑包体) 板状晶体 Em0124 阿富汗 潘杰希尔谷 0.50 7.43×3.04×2.44 绿 柱状晶体 Em0125 阿富汗 潘杰希尔谷 0.36 9.63×2.12×2.06 浅绿 柱状晶体 Em0126 阿富汗 潘杰希尔谷 0.90 6.74×4.06×3.85 绿 柱状晶体 Em0127 阿富汗 潘杰希尔谷 0.24 4.52×2.31×1.29 浅绿 柱状晶体 Em0128 阿富汗 潘杰希尔谷 0.45 7.54×3.07×2.55 绿 柱状晶体 Em0146 俄罗斯 乌拉尔山脉 0.19 4.47×3.26×2.23 绿 椭圆刻面 Em0147 俄罗斯 乌拉尔山脉 0.56 6.18×4.08×3.05 浅绿 刻面 Em0148 俄罗斯 乌拉尔山脉 0.38 4.19×4.36×2.77 绿 刻面 Em0149 俄罗斯 乌拉尔山脉 0.44 7.14×3.74×2.90 浅绿 马眼刻面 Em0150 俄罗斯 乌拉尔山脉 0.40 5.19×3.23×2.77 浅绿 刻面 Em0197 尼日利亚 高原州卡杜纳 0.75 4.08×3.13×6.71 极浅绿 柱状晶体 Em0198 尼日利亚 高原州卡杜纳 0.92 4.08×3.13×6.71 浅绿 柱状晶体 Em0199 尼日利亚 高原州卡杜纳 1.27 4.48×2.85×7.10 浅绿渐变 柱状晶体 Em0200 尼日利亚 高原州卡杜纳 2.55 4.63×3.76×8.64 浅绿 柱状晶体 Em0209 尼日利亚 高原州卡杜纳 1.16 4.76×3.49×6.38 极浅绿 柱状晶体 表 2 祖母绿红外光谱谱带特征
Table 2. Infrared spectral band characteristics of emerald
H2OⅠ型
祖母绿峰位归属振动模式 尼日利亚-KP Ⅰ型水矿区谱图特征
(哥伦比亚-EC,
阿富汗-P,俄罗斯-U)8698 - 中 中 7275 υ倍频[8-9, 25, 29] 偏至7320, m 中 7140 υ3Ⅰ倍频[8-9, 25, 29] 强 中 7097, 7074 υⅡ倍频[8-9, 25] 弱, 几乎无 中-强, 峰强(7097:7074) ≈1:1, 峰形分裂 6820 υⅠ倍频[2, 22, 25] 中 中 5590 - 无 弱 5447 - 中(肩峰) H2OⅠ多者有,中(肩峰) 5340 - - H2OⅠ少者有, 肩峰 5274 υ2+υ3Ⅰ/Ⅱ合频[4, 8-9, 18] 强, 峰形深窄 强, H2OⅠ多者峰形深窄 5205 - 弱 弱 5105 υⅠ合频 中(肩峰) H2OⅠ多者有,中(肩峰) 4938 - - 弱 4881, 4807 - 弱 H2OⅠ多者有,弱 4646 - 中 中 4535 - 弱 弱 3929 - 强 强 3698 υ3Ⅰ[13, 22, 25] 中 H2OⅠ多者有, 中 3593 υ1Ⅱ[13, 21, 26, 29] - 弱-中 3520 υ3Ⅰ-υlib 中 H2OⅠ多者可见峰,中 3240 [Fe2(OH)4]2-[25] 中 中 3160 Na—HⅠ[25] 弱 中 3111 M—OHⅠ[24-25] 弱 中 2741 Cl-[4, 22, 26] 中 中 2687 H—O—D[22-23] 弱 H2OⅠ多者有,弱 2672 H—O—D[22-23] - 弱 2641 H—O—D[22-23] 弱 弱 2474 Cl-[4, 22, 26] 偏至2452, 中 中 2376 - - 肩峰 2358 CO2[2-4] 肩峰 肩峰 2341 - 强 强 1627 υ2Ⅱ[13, 21] 弱 弱 1207, 1069, 1018, 977 υ3(Si—O—Si),
υ3(O—Si—O),
υ1 (O—Si—O)强, 峰强:977≫1018 - 819, 750, 693 υ1 (Si—O—Si)[1, 13, 27] 中 中 649 Be—O[21] 弱 弱 600, 532, 494, 452 υ2(Si—O), υ(M—O)
及其耦合振动[1-2, 21]中-强 中-强 416 - 弱 弱 注:本表包含反射和透射测试结果。实际峰位位置允许存在一定误差,不同峰位误差范围不同,一般不超过±4cm-1。υ1表示对称伸缩振动,υ2为弯曲振动,υ3为非对称伸缩振动,υlib为晶格振动。峰强表示:强、中、弱、肩峰。短线表示未知、不明确或不明显特征。常见峰位归属参考文献见表中标注。 表 3 祖母绿样品的EPMA部分含量数据
Table 3. Part EPMA data of emerald samples
产地 样品编号 SiO2
(%)Al2O3
(%)MgO+
FeOT(%)Na2O+K2O
+Cs2O(%)哥伦比亚 Em0014 67.291 17.130 0.802 0.639 Em0015 66.898 17.045 0.778 0.570 Em0016 66.778 17.047 0.889 0.694 Em0017 65.626 16.653 1.041 0.838 Em0018 65.962 16.513 0.485 0.497 阿富汗 Em0124 67.061 17.899 0.463 0.298 Em0125 65.838 19.358 0.497 0.329 Em0126 65.742 17.829 0.505 0.348 Em0127 66.857 16.559 1.333 1.159 Em0128 67.130 17.505 0.496 0.376 俄罗斯 Em0146 65.981 15.130 1.980 1.646 Em0147 65.522 15.840 2.046 1.566 Em0148 64.809 15.137 2.376 1.631 Em0149 65.457 16.609 1.067 1.021 Em0150 65.705 15.830 1.673 1.355 尼日利亚 Em0197 68.415 18.083 0.838 0.149 Em0198 68.002 18.027 0.802 0.234 Em0199 68.598 18.463 0.441 0.147 Em0200 68.678 18.318 0.570 0.124 Em0209 67.263 17.624 0.700 0.124 注:FeOT表示全铁。 -
[1] 郭燕.新疆南疆某地祖母绿(绿柱石)的EPMA、XRD、IR、LRM测试分析研究[D].乌鲁木齐: 新疆大学, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10755-1015534889.htm Guo Y.Study on EPMA, XRD, IR, LRM of Emerald(Beryl) from the South of Xinjiang[D].Urumqi: Xinjiang University, 2012.
[2] 徐錞.云南麻栗坡高钒祖母绿的宝石矿物学特征研究[D].北京: 中国地质大学(北京), 2016.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068272.htm Xu C.Study on the Gemological and Mineralogical Characteristics of Vanadium Rich Emeralds from Malipo Yunnan[D].Beijing: China University of Geosciences (Beijing), 2016.
[3] 景辰.新疆达布达地区祖母绿的矿物学及光谱学特征研究[D].北京: 中国地质大学(北京), 2015.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1015387194.htm Jing C.Characteristics of Mineralogy and Spectroscopy of the Emerald Deposit, Davadar, Xijiang[D].Beijing: China University of Geosciences (Beijing), 2015.
[4] 林默青.尼日利亚祖母绿的宝石学和矿物学研究[D].北京: 中国地质大学(北京), 2013.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1016057952.htm Lin M Q.The Study on the Gemological and Mineralogical Characteristics of Nigerian Emerald[D].Beijing: China University of Geosciences (Beijing), 2013.
[5] 任伟, 汪立今, 李甲平.电子探针和X射线衍射仪测定新疆祖母绿宝石[J].岩矿测试, 2010, 29(2):179-181. doi: 10.3969/j.issn.0254-5357.2010.02.018 http://www.ykcs.ac.cn/article/id/5a9e1771-8bd3-42f9-b2fc-d5fe67a5c11f
Ren W, Wang L J, Li J P.Detection of emerald from Xinjiang by electron probe micro-analyzer and X-ray diffractometer[J].Rock and Mineral Analysis, 2010, 29(2):179-181. doi: 10.3969/j.issn.0254-5357.2010.02.018 http://www.ykcs.ac.cn/article/id/5a9e1771-8bd3-42f9-b2fc-d5fe67a5c11f
[6] 代鸿章, 王登红, 刘丽君, 等.四川甲基卡稀有金属矿区祖母绿的矿物学特征[J].矿物学报, 2018, 38(2):135-141. http://epub.cnki.net/grid2008/detail.aspx?filename=KWXB201802002&dbname=DKFX2018
Dai H Z, Wang D H, Liu L J, et al.A study on the emerald in the Jiajika rare metal mining area, Sichuan Province, China[J].Acta Mineralogica Sinica, 2018, 38(2):135-141. http://epub.cnki.net/grid2008/detail.aspx?filename=KWXB201802002&dbname=DKFX2018
[7] 邹妤, 孙婉洁, 赵旭刚, 等.云南麻栗坡祖母绿生长环带特征[J].硅酸盐通报, 2017, 36(2):419-424. http://d.old.wanfangdata.com.cn/Periodical/gsytb201702001
Zou Y, Sun W J, Zhao X G, et al.Characteristics of growth zone of emerald from Malipo, Yunnan Province[J].Bulletin of the Chinese Ceramic Society, 2017, 36(2):419-424. http://d.old.wanfangdata.com.cn/Periodical/gsytb201702001
[8] 李晓静.常见宝石的近红外光谱研究[D].昆明: 昆明理工大学, 2016.
http://cdmd.cnki.com.cn/Article/CDMD-10674-1016229466.htm Li X J.NIR Study of Some General Gems[D].Kunming: Kunming University of Science and Technology, 2016.
[9] 李晓静, 祖恩东.环状硅酸盐宝石矿物近红外光谱分析[J].硅酸盐通报, 2016, 35(4):1318-1321. http://d.old.wanfangdata.com.cn/Periodical/gsytb201604058
Li X J, Zu E D.Near-infrared spectrum analysis of cyclosilicates gem minerals[J].Bulletin of the Chinese Ceramic Society, 2016, 35(4):1318-1321. http://d.old.wanfangdata.com.cn/Periodical/gsytb201604058
[10] 代鸿章, 王登红, 刘丽君, 等.电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石[J].岩矿测试, 2018, 37(3):336-345. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201712140193
Dai H Z, Wang D H, Liu L J, et al.Study on emerald-level beryl from the Zhen'an W-Be polymetallic deposit in Shaanxi Province by electron probe micro analyzer and micro X-ray diffractometer[J].Rock and Mineral Analysis, 2018, 37(3):336-345. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201712140193
[11] 尹作为, 李笑路, 包德清, 等.莫桑比克摩根石的谱学特征研究[J].光谱学与光谱分析, 2014, 34(8):2175-2179. doi: 10.3964/j.issn.1000-0593(2014)08-2175-05
Yin Z W, Li X L, Bao D Q, et al.Spectroscopic characteristics study of morganite from Mozambique[J].Spectroscopy and Spectral Analysis, 2014, 34(8):2175-2179. doi: 10.3964/j.issn.1000-0593(2014)08-2175-05
[12] 那宝成, 孙瑞皎, 李增胜, 等.浅粉红色-粉红色绿柱石的宝石学特征[J].宝石和宝石学杂志, 2014, 16(3):32-37. doi: 10.3969/j.issn.1008-214X.2014.03.004
Na B C, Sun R J, Li Z S, et al.Gemmological characteristics of light pink to pink beryl[J].Journal of Gems & Gemmology, 2014, 16(3):32-37. doi: 10.3969/j.issn.1008-214X.2014.03.004
[13] 曲梦.新疆阿尔泰可可托海海蓝宝石的宝石矿物学研究[D].北京: 中国地质大学(北京), 2014.
http://cdmd.cnki.com.cn/article/cdmd-11415-1014239416.htm Qu M.Mineralogical and Gemological Study of Aquamarine from Keketuohai in Aletai of Xinjiang[D].Beijing: China University of Geosciences (Beijing), 2014.
[14] 何立言, 龙楚, 英萸, 等.水热法合成绿柱石的特征[J].宝石和宝石学杂志, 2018, 20(3):9-17. http://d.old.wanfangdata.com.cn/Periodical/glgxy200804014
He L Y, Long C, Ying Y, et al.Chracteristics of hydrothermal synthetic beryl[J].Journal of Gems & Gemmology, 2018, 20(3):9-17. http://d.old.wanfangdata.com.cn/Periodical/glgxy200804014
[15] 钟倩, 廖宗廷, 周征宇, 等.水热法合成Paraíba色绿柱石的宝石学特征[J].宝石和宝石学杂志, 2016, 18(6):1-7. doi: 10.3969/j.issn.1008-214X.2016.06.001
Zhong Q, Liao Z T, Zhou Z Y, et al.Gemmological characteristics of hydrothermal synthetic Paraíba-colour beryl[J].Journal of Gems & Gemmology, 2016, 18(6):1-7. doi: 10.3969/j.issn.1008-214X.2016.06.001
[16] 曹盼, 康亚楠, 祖恩东.天然祖母绿和水热法合成祖母绿的拉曼光谱分析[J].光散射学报, 2016, 28(1):42-44. http://d.old.wanfangdata.com.cn/Periodical/gssxb201601007
Cao P, Kang Y N, Zu E D.Study on Roman spectrum of natural emerald and synthetic emerald by hydrothermal method[J].The Journal of Light Scattering, 2016, 28(1):42-44. http://d.old.wanfangdata.com.cn/Periodical/gssxb201601007
[17] Bidny A S, Baksheev I A, Popov M P, et al.Beryl from deposits of the Ural emerald belt, Russia:ICP-MS-LA and infrared spectroscopy study[J].Moscow University Geology Bulletin, 2011, 66(2):108-115. doi: 10.3103/S0145875211020037
[18] Taran M N, Dyar M D, Khomenko V M.Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl[J].Physics & Chemistry of Minerals, 2017(2):1-8. http://cn.bing.com/academic/profile?id=8ca35627671128f48b2dc3ce51baef6f&encoded=0&v=paper_preview&mkt=zh-cn
[19] Ventura G D, Radica F, Bellatreccia F, et al.Speciation and diffusion profiles of H2O in water-poor beryl:Comparison with cordierite[J].Physics & Chemistry of Minerals, 2015, 42(9):1-11. https://www.researchgate.net/publication/277978025_Speciation_and_diffusion_profiles_of_H2O_in_water-poor_beryl_comparison_with_cordierite
[20] Fridrichová J, Bačík P, Bizovská V, et al.Spectroscopic and bond-topological investigation of interstitial volatiles in beryl from Slovakia[J].Physics & Chemistry of Minerals, 2016, 43(6):419-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b06dbcd932a3d7df9abf8ce1c3bb110
[21] Zhukova E S, Torgashev V I, Gorshunov B P, et al.Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice[J].Journal of Chemical Physics, 2014, 140(22):224317. doi: 10.1063/1.4882062
[22] Mashkovtsev R I, Thomas V G, Fursenko D A, et al.FTIR spectroscopy of D2O and HDO molecules in the c-axis channels of synthetic beryl[J].American Mineralogist, 2016, 101(1):175-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=am-2016-5432
[23] Belyanchikov M A, Zhukova E S, Tretiak S, et al.Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments[J].Physical Chemistry Chemical Physics, 2017, 19(45):30740-30748. doi: 10.1039/C7CP06472A
[24] 亓利剑, 招博文, 周征宇, 等.新疆黄色绿柱石结构水辐照离解与F-NIR光谱解析[J].矿物学报, 2012, 32(增刊):103-105. http://d.old.wanfangdata.com.cn/Conference/7714712
Qi L J, Zhao B W, Zhou Z Y, et al.Radiation dissociation and F-NIR spectra analysis of the structure water in yellow beryl in Xinjiang[J].Acta Mineralogica Sinica, 2012, 32(Supplement):103-105. http://d.old.wanfangdata.com.cn/Conference/7714712
[25] 亓利剑, 叶松, 向长金, 等.绿柱石通道中配合物的振动光谱和辐照裂解[J].地质科技情报, 2001, 20(3):659-670. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200103012
Qi L J, Ye S, Xiang C J, et al.Vibration spectrum and irradiation splitting of mixture in beryl channels[J].Geological Science and Technology Information, 2001, 20(3):659-670. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200103012
[26] 申柯娅.天然祖母绿与合成祖母绿的成分及红外吸收光谱研究[J].岩矿测试, 2011, 30(2):233-237. doi: 10.3969/j.issn.0254-5357.2011.02.024 http://www.ykcs.ac.cn/article/id/ce380698-cdb7-491c-8284-258a85a55ac4
Shen K Y.Study on chemical compositions and infrared absorption spectra of natural and synthetic emeralds[J].Rock and Mineral Analysis, 2011, 30(2):233-237. doi: 10.3969/j.issn.0254-5357.2011.02.024 http://www.ykcs.ac.cn/article/id/ce380698-cdb7-491c-8284-258a85a55ac4
[27] 邵慧娟, 亓利剑, 钟倩, 等.俄罗斯富铁型水热法合成祖母绿特征研究[J].宝石和宝石学杂志, 2014, 16(1):26-34. doi: 10.3969/j.issn.1008-214X.2014.01.004
Shao H J, Qi L J, Zhong Q, et al.Study on characteristics of iron-rich hydrothermal synthetic emerald from Russia[J].Journal of Gems & Gemmology, 2014, 16(1):26-34. doi: 10.3969/j.issn.1008-214X.2014.01.004
[28] Erkoyun H.Occurrence of Cr-bearing beryl in stream sediment from Eskişehir, NW Turkey[J].Earth Sciences Research Journal, 2016, 20(3):A1-A10. http://cn.bing.com/academic/profile?id=a9b5b9786779b5a68cf360ebacfccd98&encoded=0&v=paper_preview&mkt=zh-cn
[29] 亓利剑, 夏义本, 袁心强.合成红色绿柱石中通道水分子构型及1H和23Na核磁共振谱表征[J].宝石和宝石学杂志, 2002, 4(3):8-15. doi: 10.3969/j.issn.1008-214X.2002.03.003
Qi L J, Xia Y B, Yuan X Q.Channel-water molecular pattern and 1H, 23Na NMR spectra representation in synthetic red beryl[J].Journal of Gems & Gemmology, 2002, 4(3):8-15. doi: 10.3969/j.issn.1008-214X.2002.03.003
[30] Hummer G, Rasaiah J C, Noworyta J P.Water conduction through the hydrophobic channel of a carbon nanotube[J].Nature, 2001, 414(6860):188-190. doi: 10.1038/35102535
[31] Gorshunov B P, Zhukova E S, Torgashev V I, et al.Quantum behavior of water molecules confined to nano cavities in gemstones[J].Journal of Physical Chemistry Letters, 2013, 4(12):2015-2020. doi: 10.1021/jz400782j