中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究

刘喜锋, 贾玉衡, 刘琰. 新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究[J]. 岩矿测试, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072
引用本文: 刘喜锋, 贾玉衡, 刘琰. 新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究[J]. 岩矿测试, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072
Xi-feng LIU, Yu-heng JIA, Yan LIU. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072
Citation: Xi-feng LIU, Yu-heng JIA, Yan LIU. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072

新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究

  • 基金项目:
    中国地质调查局“中国矿产地质志”二级项目(DD20160346,DD20190379);自然资源部中国地质调查局地质调查项目(DD20190060);广东省青年创新人才类项目(60-CQ180009);国家自然科学基金项目(41772044)
详细信息
    作者简介: 刘喜锋, 讲师, 主要从事宝石科研和教育工作。E-mail:liuxf@gcu.edu.cn
    通讯作者: 刘琰, 副研究员, 主要从事稀土和稀有金属矿床研究。E-mail:ly@cags.ac.cn
  • 中图分类号: P619.281;P597.3

Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang

More Information
  • 新疆和田透闪石集合体(软玉)矿带长约1300km,是世界上最大的软玉矿带。除传统上认识的山料和籽料外,在新疆若羌—且末地区也分布着大量的戈壁料软玉。以往对戈壁料软玉的研究主要集中在肉眼鉴定以及与人工仿制品的区别,对其来源、年龄以及成因类型等研究尚未开展。本研究采用电子探针、电感耦合等离子体质谱、氢氧稳定同位素质谱以及SHRIMP U-Pb测年等技术对若羌戈壁料的化学成分、矿物组成及年龄进行研究,在此基础上明确其成因类型。测试结果表明,若羌戈壁料主要由纤维状透闪石和阳起石(>95%)组成,并含少量(< 5%)磷灰石、透辉石、绿帘石、铬铁矿等矿物。戈壁料颜色主要有深绿色、绿色、黄绿色、白色,除白色以外的颜色与其中的FeO含量(0.48%~2.92%)有关。样品全岩的化学成分与透闪石晶体化学组成类似,全岩稀土配分模式显示Eu负异常(δEu=0.09~0.66),LREE富集,HREE平坦,稀土总量(6.93~115.93μg/g)、Cr(68.8~119μg/g)、Ni(16.4~38.8μg/g)较低。戈壁料成矿流体中氢同位素δD为-24.94‰~-56.83‰,平均值为-40.14‰,显示其主要由岩浆水、大气降水组成。从戈壁料样品中分离出的锆石SHRIMP U-Pb年龄有四组(40~60Ma、480Ma、785Ma和1450~2460Ma),这些年龄可以约束戈壁料的形成时代。戈壁料软玉的地球化学和成矿流体组成与已报道的典型的镁质矽卡岩矿床中的软玉组成类似,其中400Ma左右的成矿年龄与报道的大部分和田区域的成矿年龄一致,多组成矿年龄也显示了软玉多期次成矿的特点。
  • 加载中
  • 图 1  戈壁料软玉的显微照片及背散射电子图像

    Figure 1. 

    图 2  戈壁料软玉中的透闪石和阳起石分类

    Figure 2. 

    表 1  戈壁料软玉中主要矿物化学成分EPMA分析结果

    Table 1.  EPMA data of main minerals in nephrites from Gobi nephrite, Xinjiang

    样品编号 含量(%)
    SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O K2O Total Mg/(Mg+Fe2+) 矿物名称
    RQGB-12-Q3-1 37.92 0.11 4.28 0.26 0.01 0.03 17.22 10.24 1.36 0.15 71.56 0.99 透辉石
    RQGB-12-Q3-2 44.53 0.04 0.66 0.22 0.00 0.00 17.69 13.67 0.33 0.03 77.16 0.99 透辉石
    RGG13-01-1-1 58.61 0.00 0.54 0.86 0.00 0.12 24.11 12.54 0.08 0.03 96.89 0.97 透闪石
    RGG13-01-1-2 58 0.01 0.53 0.70 0.00 0.07 23.71 12.16 0.07 0.05 95.3 0.97 透闪石
    RGG13-01-2-1 58.45 0.00 0.55 0.76 0.03 0.12 23.91 12.3 0.08 0.03 96.2 0.97 透闪石
    RGG13-01-2-2 58.31 0.00 0.55 0.75 0.00 0.13 23.59 12.65 0.07 0.03 96.08 0.97 透闪石
    RGG13-01-3-1 58.44 0.00 0.47 0.75 0.01 0.06 23.9 12.38 0.09 0.01 96.1 0.97 透闪石
    RGG13-01-3-2 58.42 0.01 0.57 0.99 0.03 0.07 23.88 12.41 0.10 0.05 96.5 0.97 透闪石
    RGG13-01-4-1 58.18 0.06 0.53 0.73 0.02 0.11 23.63 12.61 0.08 0.05 95.98 0.96 透闪石
    RGG13-01-4-2 58.45 0.10 0.57 0.86 0.00 0.07 23.72 12.36 0.09 0.05 96.27 0.96 透闪石
    RGG13-09-1-1 57.87 0.00 0.82 0.53 0.04 0.04 24.02 12.94 0.15 0.09 96.46 0.96 透闪石
    RGG13-09-1-2 57.9 0.06 0.70 0.48 0.00 0.04 23.85 13.08 0.09 0.06 96.26 0.96 透闪石
    RGG13-09-2-1 57.85 0.06 0.76 0.51 0.00 0.12 23.94 13.32 0.12 0.08 96.76 0.96 透闪石
    RGG13-09-2-2 58.11 0.00 0.74 0.52 0.01 0.07 23.97 13.1 0.11 0.07 96.69 0.95 透闪石
    RGG13-09-3-1 57.96 0.02 0.77 0.54 0.00 0.16 23.92 13.09 0.1 0.05 96.61 0.96 透闪石
    RGG13-09-3-2 57.79 0.01 0.81 0.48 0.00 0.08 23.57 12.96 0.13 0.06 95.89 0.96 透闪石
    RQGB-19-1-1 57.1 0.01 0.8 2.66 0.00 0.09 22 13.24 0.09 0.04 96.03 0.86 阳起石
    RQGB-19-1-2 57.11 0.01 0.76 2.68 0.00 0.05 21.68 13.08 0.09 0.08 95.54 0.86 阳起石
    RQGB-19-1-3 57.15 0.10 0.73 2.74 0.00 0.10 21.71 13.16 0.11 0.04 95.84 0.86 阳起石
    RQGB-19-2-1 57.2 0.00 0.72 2.77 0.00 0.10 21.84 13.41 0.12 0.05 96.21 0.86 阳起石
    RQGB-19-2-2 56.69 0.01 0.8 2.62 0.00 0.10 21.76 12.92 0.12 0.12 95.14 0.86 阳起石
    RQGB-19-2-3 57.1 0.08 0.73 2.92 0.02 0.11 21.46 12.99 0.10 0.05 95.54 0.85 阳起石
    下载: 导出CSV

    表 2  戈壁料软玉微量元素分析结果

    Table 2.  Analysis of trace elements in Gobi nephrite, Xinjiang

    元素 含量(μg/g)
    RQGB-11 RQGB-12 RQGB-13 RQGB-14 RQGB-15 RQGB-16 RQGB-17 RQGB-18 RQGB-19 RQGB-20 RQGB-27 平均值
    Li 5 10.9 6.74 9.33 13.7 5.96 2.25 6.55 3.42 5.37 3.45 6.61
    Be 3.21 2.82 6.92 21.6 21.4 1.76 6.81 17.6 3.94 20.1 1.67 9.8
    Cr 96.5 68.8 84.8 119 69.1 88.6 99.2 69.3 78.8 79.7 72 84.16
    Mn 382 237 430 769 1029 185 767 659 972 427 640 590.64
    Co 3.33 2.54 5.29 7.62 6.26 3.34 4.14 3.66 24.7 3.58 3.38 6.17
    Ni 20.9 23 24.6 25.8 18.2 20.6 22.2 16.4 38.8 20.7 19 22.75
    Cu 4.14 2.48 3.09 543 5.53 3.76 3.91 2.6 2.85 21.4 10.5 54.84
    Zn 28 59.6 69.2 147 109 26.3 139 122 99 75.2 256 102.75
    Ga 2.67 2.16 2.12 2.72 3.45 2.9 0.97 2.6 1.36 1.78 0.57 2.12
    Rb 2.8 2.59 4.58 7.84 33.4 5.99 3.25 6.56 4.62 7.08 2.79 7.41
    Sr 26.1 34.5 12.7 20.2 205 11.5 17.7 49.6 20.2 19.9 14.7 39.28
    Mo 11.2 8.67 10.6 14.8 8.09 10.8 12.2 8.84 9.75 10.4 10.2 10.5
    Cd 0.16 0.08 0.08 0.08 0.08 0.12 0.18 0.05 0.08 0.07 0.15 0.1
    In <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.11 0.11
    Cs 2.07 3.74 3.95 2.62 4.56 3.73 1.49 1.83 0.98 1.63 3.77 2.76
    Ba 35.2 38.6 17.8 34 154 13.9 26.1 30.6 22.9 46.6 7.72 38.86
    Tl <0.05 <0.05 <0.05 0.05 0.27 0.06 <0.05 <0.05 <0.05 <0.05 <0.05 0.13
    Pb 4.36 2.45 3.44 7.7 5.5 2.18 2.02 4.37 2.46 7.42 2.18 4.01
    Bi <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
    Th 0.94 0.64 0.91 0.32 0.58 0.71 0.69 0.86 0.21 0.78 0.23 0.62
    U 1.22 1.75 1.07 0.76 0.53 0.75 0.83 1.07 0.35 0.58 0.71 0.87
    Nb 1.5 0.67 1.25 1.26 0.77 0.99 1.17 2.49 1.77 1.13 2.37 1.4
    Ta 0.1 0.05 0.1 <0.05 <0.05 0.08 <0.05 0.13 0.16 0.07 0.15 0.11
    Zr 18.5 8.67 15.4 7.73 8.63 12.4 7.26 4.93 5.95 11.3 12.2 10.27
    Hf 0.53 0.13 0.44 0.24 0.25 0.35 0.22 0.15 0.19 0.32 0.34 0.29
    Sn 1.01 1.19 0.65 0.89 0.95 0.65 0.7 1.03 0.71 0.58 24.5 2.99
    Sb 0.26 0.18 0.37 1.04 0.24 0.24 0.21 0.77 2.08 0.56 0.96 0.63
    Ti 327 184 395 185 182 232 116 182 142 298 294 230.64
    W 2.09 1.4 2.01 4.01 1.62 1.67 2.34 2.46 2.11 2.94 2.67 2.3
    As 0.83 0.95 0.95 4.86 0.77 0.82 1.02 1.36 1.25 1.48 3.44 1.61
    V 18.4 24.6 26.9 29.7 28.3 11.4 10.7 7.02 23.8 9.53 8.05 18.04
    La 5.35 2.93 4.83 2.54 4.05 12.1 2.98 27.4 1.43 2.05 7.62 6.66
    Ce 8.37 4.6 9.05 5 7.79 18.9 5.49 50.1 2.63 3.73 13.2 11.71
    Pr 0.95 0.62 1.08 0.57 0.84 2.27 0.55 5.3 0.29 0.41 1.31 1.29
    Nd 3.46 2.71 4.18 2.21 3.12 8.03 1.96 18.5 1.13 1.59 4.49 4.67
    Sm 0.72 0.55 0.81 0.43 0.55 1.57 0.34 3.91 0.21 0.4 0.87 0.94
    Eu 0.12 0.08 0.11 <0.05 0.12 0.24 <0.05 0.48 <0.05 <0.05 <0.05 0.19
    Gd 0.82 0.64 0.88 0.47 0.54 1.63 0.37 3.68 0.23 0.41 0.91 0.96
    Tb 0.13 0.1 0.13 0.08 0.08 0.23 0.06 0.52 <0.05 0.07 0.16 0.16
    Dy 0.86 0.64 0.82 0.6 0.52 1.53 0.38 2.77 0.27 0.43 0.99 0.89
    Ho 0.2 0.17 0.17 0.15 0.12 0.36 0.09 0.49 0.07 0.09 0.21 0.19
    Er 0.67 0.6 0.5 0.54 0.41 1.14 0.29 1.3 0.25 0.32 0.6 0.6
    Tm 0.1 0.09 0.07 0.08 0.07 0.17 0.05 0.17 <0.05 <0.05 0.09 0.1
    Yb 0.62 0.6 0.45 0.59 0.48 1.02 0.37 1.14 0.34 0.28 0.57 0.59
    Sc 2.2 2.55 2.44 3.89 2.15 2.22 1.76 1.62 1.53 2.39 1.99 2.25
    Y 10 6.86 5.68 5.46 3.88 16 3.21 14.9 2.45 3.44 6.1 7.09
    δEu 0.48 0.41 0.4 0.17 0.66 0.45 0.21 0.38 0.35 0.19 0.09 0.34
    LREE 18.97 11.49 20.06 10.775 16.47 43.11 11.35 105.69 5.72 8.21 27.52 25.4
    HREE 3.5 2.94 3.09 2.6 2.29 6.23 1.67 10.24 1.21 1.6 3.61 3.54
    ∑REE 22.47 14.43 23.15 13.375 18.76 49.34 13.02 115.93 6.93 9.81 31.13 28.94
    下载: 导出CSV

    表 3  戈壁料软玉中锆石SHRIMP测试分析结果

    Table 3.  SHRIMP analysis of zircon in Gobi nephrite, Xinjiang

    测点号 206Pbc
    (%)
    U
    (μg/g)
    Th
    (μg/g)
    206Pb*
    (μg/g)
    Th/U 207Pb*/206Pb* 207Pb*/235U 206Pb*/238U 206Pb/238U
    年龄(Ma)
    RQGB-01-6 2.36 486 281 0.62 2.45 164.6±2.2 0.0564±4.1 38.16±0.90 37.91±0.99
    RQGB-01-7 - 780 459 0.61 4.22 159.1±1.9 0.0495±3.7 40.44±0.76 39.65±0.86
    RQGB-01-8 0.05 2988 3323 1.15 16.3 157.7±2 0.0456±4.9 40.72±0.83 41.2±1.10
    RQGB-01-5 - 356 141 0.41 1.93 158.3±2.1 0.0523±5.7 42.1±1.10 39.43±0.93
    RQGB-01-1 2.48 1037 814 0.81 6.07 146.7±1.9 0.0512±3.3 42.75±0.88 43.6±1.30
    RQGB-01-3 0.26 8294 10380 1.29 64.8 109.9±4.1 0.04901±0.96 58.2±2.40 57.3 ±3.20
    RQGB-01-2 0.08 821 85 0.11 55.6 12.68±1.8 0.05703±0.99 489.0±8.40 489.2±8.50
    RQGB-01-4 0.12 726 56 0.08 49.9 12.51±2 0.05738±1 495.4±9.50 495.2±9.70
    RQGB-08-1 0.05 1642 312 0.2 109 12.96±1.4 0.05812±0.77 478.9±6.6 479.2±6.8
    RQGB-09-1 0.06 931 15 0.02 282 2.836±1.5 0.12349±0.36 1946±26 1947±26
    RQGB-09-2 0.3 859 531 0.64 221 3.338±1.6 0.1213±0.41 1685±24 1664±26
    RQGB-09-3 0.03 583 54 0.1 131 3.832±1.6 0.11621±0.55 1494±21 1487±21
    RQGB-09-4 0.04 632 23 0.04 165 3.297±1.5 0.11487±0.47 1707±23 1707±23
    RQGB-09-5 0.02 444 42 0.1 177 2.152±1.5 0.1949±0.37 2460±32 2459±32
    RQGB-09-6 0.15 355 50 0.15 76 4.013±1.8 0.11583±0.72 1432±23 1420±24
    RQGB-09-7 0.35 413 98 0.25 91.4 3.883±1.8 0.12792±0.64 1473±24 1451±25
    RQGB-09-8 0.01 934 190 0.21 300 2.676±1.5 0.14137±0.69 2046±27 2048±27
    RQGB-09-9 0.17 319 38 0.12 85.8 3.198±2.1 0.1229±1.5 1751±32 1749±33
    RQGB-09-10 0.44 502 416 0.86 56.1 7.69±1.6 0.06672±1 785±11 789±13
    注:206Pbc206Pb*分别表示普通铅和放射性成因铅;普通铅根据实测204Pb进行校正。
    下载: 导出CSV
  • [1]

    Simandl G J, Riveros C P, Schiarizza P.Nephrite (Jade) Deposits, Mount Ogden Area, Central British Columbia (NTS 093N 13W)[R].British Columbia Geology Survey, 1999: 339-347.

    [2]

    Makepeace K, Simandl G J.Jade (Nephrite) in British Columbia, Canada[R].Program and Extended Abstracts for 37th Forum on the Geology of Indutrial Minerals, 2001: 209-210.

    [3]

    Łapot W.Peculiar nephrite from the East Saian Mts (Siberia)[J].Mineralogia Polonica, 2004, 35:49-58. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f0656765eb076f0764ab4b261290ef65

    [4]

    Yui T F, Kwon S T.Origin of a dolomite-related jade deposit at Chuncheon, Korea[J].Economic Geology, 2002, 97:593-601. doi: 10.2113/gsecongeo.97.3.593

    [5]

    Harlow G E, Sorensen S S.Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47:113-146. doi: 10.2747/0020-6814.47.2.113

    [6]

    Liu Y, Deng J, Shi G H, et al.Chemical zone of nephrite in Almas, Xinjiang, China[J].Resource Geology, 2010, 60:249-259. doi: 10.1111/rge.2010.60.issue-3

    [7]

    Liu Y, Deng J, Shi G H, et al.Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Journal of Asian Earth Sciences, 2011, 42:440-451. doi: 10.1016/j.jseaes.2011.05.012

    [8]

    Liu Y, Deng J, Shi G H, et al.Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang[J].Ore Geology Reviews, 2011, 41:122-132. doi: 10.1016/j.oregeorev.2011.07.004

    [9]

    于海燕, 阮青锋, 孙媛, 等.不同颜色青海软玉微观形貌和矿物组成特征[J].岩矿测试, 2018, 37(6):626-636. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704250066

    Yu H Y, Ruan Q F, Sun Y, et al.Micro-morphology and mineral composition of different color Qinghai nephrites[J].Rock and Mineral Analysis, 2018, 37(6):626-636. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704250066

    [10]

    Ling X X, Schmädicke E, Li Q L, et al.Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite:A case study of the nephrite deposit from Luanchuan, Henan, China[J].Lithos, 2015, 220-223:289-299. doi: 10.1016/j.lithos.2015.02.019

    [11]

    Middleton A.JADE-Geology and Mineralogy[M]//O'Donoghue M.Gems.Oxford: Elsevier, 2006: 332-354.

    [12]

    张蓓莉.系统宝石学[M].北京:地质出版社, 2006:365-374.

    Zhang B L.Systematic Gemmology[M].Beijing:Geological Publishing House, 2006:365-374.

    [13]

    买托乎提·阿不都瓦衣提.和田玉戈壁料与仿戈壁料鉴定方法探讨[C]//中国珠宝首饰学术交流会论文集.北京: 中国珠宝玉石首饰行业协会, 2009: 157-159.

    Abuduwayiti M.Hetian Nephrite Occurring In the Gobi Desert and Their Imitation[C]//Proceedings of China Gems and Jewelry Academic Conference.Beijing: China Jewelry and Jade Jewelry Industry Association, 2009: 157-159.

    [14]

    Friedman I.Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4:89-103. doi: 10.1016/0016-7037(53)90066-0

    [15]

    Black L P, Kamo S L, Allen C M, et al.TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology[J].Chemical Geology, 2003, 200(1):155-170. https://www.researchgate.net/publication/222256326_TEMORA_1_A_new_zircon_standard_for_Phanerozoic_U-Pb_geochronology

    [16]

    Nasdala L, Hofmeister W, Norberg N, et al.Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32(3):247-265. doi: 10.1111/ggr.2008.32.issue-3

    [17]

    Compston W, Williams I S, Kirschvink J L, et al.Zircon U-Pb ages forthe Early Cambrian time-scale[J].Journal of the Geological Society, 1992, 149:171-184. doi: 10.1144/gsjgs.149.2.0171

    [18]

    Stern R A.High-resolution SIMS Determination of Ra-diogenic Tracer-Isotope Ratios in Minerals[C]//Cabri L J, Vaughan D J.Modern Approaches to Ore and Environmental Mineralogy.Mineralogical Association of Canada, 1998: 241-268.

    [19]

    Ludwig K R.Squid 1.02: A User's Manual[M].Berkeley Geochronology Center Special Publication, 2001: 1-21.

    [20]

    Ludwig K R.User's Manual for Isoplot 3.00: A Geo-chronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center Special Publication, 2003.

    [21]

    Liu Y, Zhang R Q, Zhang Z Y, et al.Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215:128-144. doi: 10.1016/j.lithos.2014.11.002

    [22]

    Liu Y, Zhang R Q, Abuduwayiti M, et al.SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72:699-727. doi: 10.1016/j.oregeorev.2015.08.023

    [23]

    Douglas J G.The study of Chinese archaic jades using non-destructive X-ray fluorescence spectroscopy[J].Acta Geologica Taiwanica, 1996, 32:43-54.

    [24]

    Douglas J G.Exploring Issues of Geological Source for Jade Worked by Ancient Chinese Cultures with the Aid of X-ray Fluorescence[C]//Jett P.Scientific Study in the Field of Asian Art.London: Archetype Publications Ltd, 2003: 192-199.

    [25]

    刘喜锋, 刘琰, 李自静, 等.新疆皮山镁质矽卡岩矿床(含糖玉)成因及锆石SHRIMP U-Pb定年[J].岩石矿物学杂志, 2017, 36(2):259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

    Liu X F, Liu Y, Li Z J, et al.The genesis of Mg-skarn deposit (bearing brown nephrite) and its Ar-Ar dating of phlogopite and SHRIMP U-Pb dating of zircon, Pishan, Xinjiang[J].Acta Petrologica et Mineralogica, 2017, 36(2):259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

    [26]

    Ohmoto H.Stable isotope geochemistry of ore deposits[J].Reviews in Mineralogy and Geochemistry, 1986, 16(1):491-559. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201801010

    [27]

    张勇, 魏华, 陆太进, 等.新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J].岩矿测试, 2018, 37(6):695-704. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801170007

    Zhang Y, Wei H, Lu T J, et al.The genesis and LA-ICP-MS zircon ages of Omixia nephrite deposit, Xinjiang, China[J].Rock and Mineral Analysis, 2018, 37(6):695-704. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801170007

    [28]

    Siqin B, Qian R, Zhuo S, et al.Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309:206-211. doi: 10.1016/j.ijms.2011.10.003

    [29]

    Grapes R H, Yun S T.Geochemistry of a New Zealand nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53:413-426. doi: 10.1080/00288306.2010.514929

    [30]

    Kostov R I, Protochristov C, Stoyanov C, et al.Micro-PIXE geochemical fingerprinting of nephrite neolithic artifacts from Southwest Bulgaria[J].Geoarchaeology, 2012, 27:457-469. doi: 10.1002/gea.21417

    [31]

    Adamo I, Bocchio R.Nephrite jade from Val Malenco, Italy:Review and update[J].Gems and Gemology, 2013, 49:98-106. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230901229/

    [32]

    Bhattacharya A, Raith M, Hoernes S, et al.Geochemical evolution of the massif-type anorthosite complex at Bolangir in the Eastern Ghats belt of India[J].Journal of Petrology, 1998, 39(6):1169-1195. doi: 10.1093/petroj/39.6.1169

    [33]

    James O B, Floss C, McGee J J.Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in Lunar ferroan anorthosites[J].Geochimica et Cosmochimica Acta, 2002, 66(7):1269-1284. doi: 10.1016/S0016-7037(01)00772-4

    [34]

    Charlier B, Auwera J V, Duchesne J C.Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S.Norway):Part Ⅱ.REE and the trapped liquid fraction[J].Lithos, 2005, 83(3):255-276. https://www.researchgate.net/publication/222576088_Geochemistry_of_cumulates_from_the_Bjerkreim-Sokndal_layered_intrusion_S_Norway_Part_II_REE_and_the_trapped_liquid_fraction

    [35]

    刘喜锋, 张红清, 刘琰, 等.世界范围内代表性碧玉的矿物特征和成因研究[J].岩矿测试, 2018, 37(5):479-489. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201712010187

    Liu X F, Zhang H Q, Liu Y, et al.Mineralogical characteristics and genesis of green nephrite from the world[J].Rock and Mineral Analysis, 2018, 37(5):479-489. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201712010187

  • 加载中

(2)

(3)

计量
  • 文章访问数:  2343
  • PDF下载数:  70
  • 施引文献:  0
出版历程
收稿日期:  2018-06-18
修回日期:  2019-03-04
录用日期:  2019-04-09

目录