中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

加速器质谱14C制样真空系统及石墨制备方法研究

刘圣华, 杨育振, 徐胜, 张慧, 蒋雅欣, 史慧霞. 加速器质谱14C制样真空系统及石墨制备方法研究[J]. 岩矿测试, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
引用本文: 刘圣华, 杨育振, 徐胜, 张慧, 蒋雅欣, 史慧霞. 加速器质谱14C制样真空系统及石墨制备方法研究[J]. 岩矿测试, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
Sheng-hua LIU, Yu-zhen YANG, Sheng XU, Hui ZHANG, Ya-xin JIANG, Hui-xia SHI. 14C Sample Preparation Vacuum Line and Graphite Preparation Method for 14C-AMS Measurement[J]. Rock and Mineral Analysis, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084
Citation: Sheng-hua LIU, Yu-zhen YANG, Sheng XU, Hui ZHANG, Ya-xin JIANG, Hui-xia SHI. 14C Sample Preparation Vacuum Line and Graphite Preparation Method for 14C-AMS Measurement[J]. Rock and Mineral Analysis, 2019, 38(3): 270-279. doi: 10.15898/j.cnki.11-2131/td.201807120084

加速器质谱14C制样真空系统及石墨制备方法研究

  • 基金项目:
    中国地质科学院基本科研业务费项目(YYWF201517, SK201603)
详细信息
    作者简介: 刘圣华, 硕士, 研究实习员, 主要从事同位素质谱分析。E-mail:cuglsh@hotmail.com
    通讯作者: 史慧霞, 硕士, 工程师, 主要从事环境地质学研究。E-mail:917580707@qq.com
  • 中图分类号: O657.63;O613.71

14C Sample Preparation Vacuum Line and Graphite Preparation Method for 14C-AMS Measurement

More Information
  • 14C制样真空系统和石墨制备方法是高精度低本底14C加速器质谱(AMS)测量的关键,而碳污染、石墨产率不稳定和同位素分馏等问题是限制该技术发展的主要难题。为了降低传统在线还原法对制样系统长时间静态真空的要求和解决Zn-TiH2/Fe火焰封管法中不可控的CH4等问题,提高石墨合成的稳定性和控制本底,本文建立了基于Zn/Fe火焰封管法的14C制样真空系统和石墨制备方法。通过比较Zn/Fe在线法和Zn/Fe火焰封管法对石墨束流性能以及标样的影响,发现Zn/Fe火焰封管法相较Zn/Fe在线法能明显克服大气泄漏问题,改善化学流程本底(0.24~0.32pMC),提高方法测年上限(47000~48000ya),同时石墨束流输出稳定。进一步利用标准样品和本底样品评估了Zn/Fe火焰封管法的技术特点,实验结果表明该法的精密度好(RSD=0.35%,n=20,标样OXⅡ),准确度高(IAEA系列标样的测定值与认定值线性拟合方程y=0.9969x+0.0013,R2=1),实验本底低(无机碳46296±271ya和有机碳48341±356ya)。因此,该石墨样品制备真空系统及Zn/Fe火焰封管法技术具有石墨品质优、化学流程本底低、准确度和精密度高等特点,满足高精度低本底14C-AMS测定石墨样品制备要求。
  • 加载中
  • 图 1  14C制样真空系统。(a)14C制样真空装置原理图,包括(A)真空维持系统、(B)CO2纯化真空系统以及(C)Zn/Fe在线法石墨化真空单元。PT为压力传感器。(b)Zn/Fe火焰封管法实验流程图

    Figure 1. 

    图 2  Zn/Fe在线法:(a)石墨化真空单元反应曲线,反应曲线分为Zn反应管加热450℃快速膨胀过程(A段)、CO2转化成CO的恒压反应过程(B段)、铁粉反应管加热550℃快递膨胀过程(C段)、石墨化的减压反应过程(D段)以及反应完成过程(E段)。反应时间>10h后压力有明显增加的趋势。(b)石墨产率

    Figure 2. 

    图 3  不同实验方法的影响。(a)OX Ⅱ样品,Zn/Fe火焰封管法稳定性优于Zn/Fe在线法,Zn/Fe火焰封管法的RSD=0.35%,n=20。蓝线为国际标样OX Ⅱ的认定值Fm=1.3407±0.0019。(b)空白样品,随火焰封管方法技术的逐步改进,Zn/Fe火焰封管法的本底年龄得到改善,分别为无机碳46296±271ya,有机碳48341±356ya。文献[10]为Zn-TiH2/Fe火焰封管法,本底年龄~50000ya;文献[16]为Zn-TiH2/Fe火焰封管法,本底年龄53382±7676ya;文献[17]为Zn-TiH2/Fe和Zn/Fe火焰封管法,本底年龄48457~51227ya;文献[21]为Zn/Fe膜封管法,本底年龄44400ya;文献[22]为Zn-TiH2/Fe火焰封管法,本底年龄44354ya。GIG为广州地球化学研究所Ionplus AGE-3 H2/Fe法;OLM为本实验室Zn/Fe在线法;STM为本实验室Zn/Fe火焰封管法

    Figure 3. 

    图 4  不同实验方法对石墨性能的影响(3min/轮)。GIG为中国科学院广州地球化学研究所Ionplus AGE-3 H2/Fe法;OLM为本实验室Zn/Fe在线法;STM为本实验室Zn/Fe火焰封管法

    Figure 4. 

    图 5  Zn/Fe火焰封管法分析系列标准样品的测定值与认定值的对比

    Figure 5. 

    表 1  标准样品认定值与测试值

    Table 1.  Certified and measured values of reference materials

    样品名 成分 样品数量(个) Fm RSD(%)
    认定值 测试值
    IHEG Cal 方解石 5 0 0.00365 18.4
    IHEG Coal 无烟煤 5 0 0.00302 12.3
    OXⅡ 草酸 20 1.3407±0.0019 1.3413 0.35
    IAEA C2 大理石 3 0.4114±0.0003 0.4105 0.10
    IAEA C3 纤维素 3 1.2941±0.0006 1.2891 0.43
    IAEA C5 木头 3 0.2305±0.0002 0.2287 0.33
    IAEA C7 草酸 3 0.4953±0.0012 0.4934 0.04
    IAEA C8 草酸 3 0.1503±0.0017 0.1503 1.16
    IAEA C9 木头 3 0.0012~0.0021 0.00307 11.3
    下载: 导出CSV
  • [1]

    Chung I M, Kim S H.Biological and biomedical 14C-accelerator mass spectrometry and graphitization of carbonaceous samples[J].Analyst, 2013, 138(12):3347-3355. doi: 10.1039/c3an00077j

    [2]

    Kutschera W.Applications of accelerator mass spectrometry[J].International Journal of Mass Spectrometry, 2013, 349-350(1):203-218. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2837469

    [3]

    Fink D.AMS-11 in Rome, 2008:Past achievements, current and future trends[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):1334-1342. doi: 10.1016/j.nimb.2009.10.167

    [4]

    管永精, 王慧娟, 鞠志萍, 等.加速器质谱技术及其在地球科学中的应用[J].岩矿测试, 2005, 24(4):41-47. http://www.ykcs.ac.cn/article/id/ykcs_20050492

    Guan Y J, Wang H J, Ju Z P, et al.Acclerator mass spectrometry and its applications in geosciences[J].Rock and Mineral Analysis, 2005, 24(4):41-47. http://www.ykcs.ac.cn/article/id/ykcs_20050492

    [5]

    Synal H-A.Developments in accelerator mass spectrometry[J].International Journal of Mass Spectrometry, 2013, 349-350:192-202. doi: 10.1016/j.ijms.2013.05.008

    [6]

    Vogel J S, Southon J R, Nelson D E, et al.Performance of catalytically condensed carbon for use in accelerator mass spectrometry[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2):289-293. doi: 10.1016/0168-583X(84)90529-9

    [7]

    Jull A, Donahue D, Hatheway A, et al.Production of graphite targets by deposition from CO/H2 for precision accelerator 14C measurements[J].Radiocarbon, 1986, 28(2A):191-197. doi: 10.1017/S0033822200007268

    [8]

    Slota P, Jull A T, Linick T, et al.Preparation of small samples for 14C accelerator targets by catalytic reduction of CO[J].Radiocarbon, 1987, 29(2):303-306. doi: 10.1017/S0033822200056988

    [9]

    Ertunc T, Xu S, Bryant C L, et al.Progress in AMS target production of sub-milligram samples at the NERC radiocarbon laboratory[J].Radiocarbon, 2005, 47(3):453-464. doi: 10.1017/S0033822200035232

    [10]

    Xu X, Trumbore S E, Zheng S, et al.Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets:Reducing background and attaining high precision[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1):320-329. doi: 10.1016/j.nimb.2007.01.175

    [11]

    Khosh M S, Xu X, Trumbore S E.Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):927-930. doi: 10.1016/j.nimb.2009.10.066

    [12]

    Macario K D, Alves E Q, Oliveira F M, et al.Graphitization reaction via zinc reduction:How low can you go?[J].International Journal of Mass Spectrometry, 2016, 410(1):47-51. http://cn.bing.com/academic/profile?id=623c56777c9085a2400278941d98203e&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    Ding P, Shen C D, Yi W X, et al.Small-mass graphite preparation for AMS 14C measurements performed at GIGCAS, China[J].Radiocarbon, 2017, 59(3):705-711. doi: 10.1017/RDC.2017.38

    [14]

    Cheng P, Zhou W, Burr G S, et al.Authentication of Chinese vintage liquors using bomb-pulse 14C[J].Scientific Reports, 2016, 6:38381-38388. doi: 10.1038/srep38381

    [15]

    D'Elia M, Calcagnile L, Quarta G, et al.Sample preparation and blank values at the AMS radiocarbon facility of the University of Lecce[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 223-224:278-283. doi: 10.1016/j.nimb.2004.04.056

    [16]

    Marzaioli F, Borriello G, Passariello I, et al.Zinc reduction as an alternative method for AMS radiocarbon dating:Process optimization at CIRCE[J].Radiocarbon, 2008, 50(1):139-149. doi: 10.1017/S0033822200043423

    [17]

    Orsovszki G, Rinyu L.Flame-sealed tube graphitization using zinc as the sole reduction agent:Precision improvement of environMICADAS 14C measurements on graphite targets[J].Radiocarbon, 2015, 57(5):979-990. doi: 10.2458/azu_rc.57.18193

    [18]

    Xu X, Gao P, Salamanca E G.Ultra small-mass graphitization by sealed tube zinc reduction method for AMS 14C measurements[J].Radiocarbon, 2013, 55(2-3):608-616. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC55_02-JATSRDCRDC55_02S0033822200057751h.xml

    [19]

    Krajcar Bronić I, Horvatinčić N, Sironić A, et al.A new graphite preparation line for AMS 14C dating in the Zagreb Radiocarbon Laboratory[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7-8):943-946. doi: 10.1016/j.nimb.2009.10.070

    [20]

    Wacker L, Němec M, Bourquin J.A revolutionary graph-itisation system:Fully automated, compact and simple[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(7):931-934.

    [21]

    Zoppi U, Crye J, Song Q, et al.Performance evaluation of the new AMS system at Accium BioSciences[J].Radiocarbon, 2016, 49(1):171-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC49_01-JATSRDCRDC49_01S0033822200041990h.xml

    [22]

    庞义俊, 何明, 杨旭冉, 等.基于小型单极加速器质谱测量14C的样品制备技术研究[J].原子能科学技术, 2017, 51(10):1866-1873. doi: 10.7538/yzk.2017.youxian.0012

    Pang Y J, He M, Yang X R, et al.14C sample preparation for compact single stage AMS[J].Atomic Energy Science and Technology, 2017, 51(10):1866-1873. doi: 10.7538/yzk.2017.youxian.0012

    [23]

    Yuan S, Wu X, Gao S, et al.The CO2 preparation system for AMS dating at Peking University[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2000, 172(1-4):458-461. doi: 10.1016/S0168-583X(00)00362-1

    [24]

    Aerts-Bijma A T, Meijer H A J, van Der Plicht J.AMS sample handling in Groningen[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1997, 123(1-4):221-225. doi: 10.1016/S0168-583X(96)00672-6

  • 加载中

(5)

(1)

计量
  • 文章访问数:  2572
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2018-07-12
修回日期:  2019-03-09
录用日期:  2019-04-09

目录