Identification Characteristics of Natural and Synthetic Amethyst by Infrared and Polarized Raman Spectroscopy
-
摘要: 天然紫晶与合成紫晶的鉴别是国内外珠宝鉴定实验室的一个难题,前人主要从双晶、色带、包裹体、红外吸收光谱特征等方面开展了研究。在利用红外光谱鉴别天然紫晶与合成紫晶时,不同的学者尚对3595cm-1或3543cm-1吸收峰作为诊断性还是指示性的判据存在不同认识。本文系统采集了典型的天然紫晶与合成紫晶样品,研究了利用红外光谱测试技术鉴别天然紫晶与合成紫晶的局限性,并尝试将偏振拉曼光谱应用于紫晶成因鉴别。结果表明:利用3595cm-1、3543cm-1红外吸收峰进行紫晶鉴别仅具有指示性意义,不能作为决定性的判定依据,偏振拉曼光谱可作为重要的补充。天然紫晶的偏振拉曼光谱(偏振方向:HH)均出现400cm-1的拉曼峰,而该峰在合成紫晶偏振拉曼光谱中缺失;合成紫晶的偏振拉曼光谱(偏振方向:HH)均具有795cm-1、448cm-1的拉曼峰,而这两个峰在天然紫晶偏振拉曼光谱中缺失。偏振拉曼光谱产生差异的原因可能与天然紫晶和合成紫晶内部晶格变形程度的不同有关。本文揭示的400cm-1、448cm-1和795cm-1偏振拉曼峰可作为鉴别紫晶成因的新依据。Abstract:
BACKGROUNDThe identification of natural and synthetic amethyst is still a challenge for gemological laboratories either at home or abroad. Previous studies focus on twinning, color band, inclusions and the infrared spectrum. Controversy still exists on whether the 3595cm-1 and 3543cm-1 absorptions are indicative or conclusive clues when employing infrared spectroscopy to separate natural amethyst from synthetics. OBJECTIVESTo characterize the features of natural and synthetic amethyst. METHODSTypical natural and synthetic amethyst samples were collected. The limitations of infrared spectroscopy to identify natural and synthetic amethyst were studied. The polarized Raman spectroscopy was applied to the identification of amethyst genesis. RESULTSThe results showed that there were some limitations in the origin determination of amethyst by using the infrared absorption peaks of 3595cm-1 and 3543cm-1 as criteria. These peaks were indicative, but cannot be used as a decisive basis. The polarized Raman spectrum was complementary to infrared spectroscopy. The polarized Raman spectrum (the direction of both incident laser and Raman signal set as horizon-HH) peak of 400cm-1 were observed in all the natural amethyst, but this peak was absent in the synthetics. The polarized Raman spectrum (direction:HH) peaks of 795cm-1 and 448cm-1 appeared in all the synthetic amethyst, but were not detected in natural amethyst. CONCLUSIONSThe difference of polarized Raman spectra may be related to different degree of crystal lattice deformation in natural and synthetic amethyst. The polarized Raman peaks of 400cm-1, 448cm-1 and 795cm-1 can be used as a new criterion for source determination of amethyst. -
图 3 用于偏振拉曼测试的偏振配置示意图[21]
Figure 3.
表 1 天然紫晶与合成紫晶的样品信息
Table 1. Sample distribution of natural and synthetic amethyst
样品类别 样品编号 样品数量 颜色 天然紫晶 NA03~NA06,NA09 5 浅紫色/黄色 NA11~NA17,NA1R~NA3R 10 深紫色 合成紫晶 SA1R~SA3R,SA04,SA08~SA10,
SA33,SA34,SA36,SA3711 深紫色 SA30~SA32,SA35 4 浅紫色 -
[1] Lehmann G, Moore W J.Color center in amethyst quartz[J].Science, 1966, 152(3725):1061-1062. doi: 10.1126/science.152.3725.1061
[2] Balitsky V S.Growth of large amethyst crystals from hydrothermal fluoride solutions[J].Journal of Crystal Growth, 1977, 41(1):100-102. doi: 10.1016/0022-0248(77)90102-6
[3] Khadzhi V E, Tsyganov E M, Tsinober L I, et al.Process for producing amethyst crystals: US, US4021294[P].1977.
[4] Crowningshield R, Hurlbut C, Fryer C W.A simple pro-cedure to separate natural from synthetic amethyst on the basis of twinning[J].Gems & Gemology, 1986, 22(3):130-139.
[5] Balitsky V S, Lu T, Rossman G R, et al.Russian synthetic ametrine[J].Gems & Gemology, 1999, 35(2):122-134. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023992489/
[6] Balitsky V S, Balitsky D V, Bondarenko G V, et al.The 3543cm-1 infrared absorption band in natural and synthetic amethyst and its value in identification[J].Gems & Gemology, 2004, 40(2):146-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fcfa036581188d37fa18214578374d43
[7] Fritsch E, Stockton C M.Infrared spectroscopy in gem iden-tification[J].Gems & Gemology, 1987, 23(1):18-26.
[8] Karampelas S, Fritsch E, Zorba T, et al.Distinguishing natural from synthetic amethyst:The presence and shape of the 3595cm-1 peak[J].Mineralogy & Petrology, 2005, 85(1-2):45-52.
[9] Breeding C M.Using LA-ICP-MS analysis for the separation of natural and synthetic amethyst and citrine[EB/OL].News from Research, July 31, 2009. http://www.gia.edu/research-resources/news-from-research.
[10] Koivula J I, Fritsch E.The growth of Brazil-twinned synthetic quartz and the potential for synthetic amethyst twinned on the Brazil law[J].Gems & Gemology, 1989, 25(3):159-164.
[11] Karampelas S, Fritsch E, Zorba T, et al.Infrared spectro-scopy of natural vs.synthetic amethyst:An update[J].Gems & Gemology, 2011, 47(3):196-201.
[12] Kitawaki H.Natural amethyst from the Caxarai Mine, Brazil, with a spectrum containing an absorption peak at 3543cm-1[J].Journal of Gemmology, 2002, 28:101-108. doi: 10.15506/JoG.2002.28.2.101
[13] Karampelas S, Fritsch E, Zorba T, et al.A refined in-frared-based criterion for successfully separating natural from synthetic amethyst[J].Gems & Gemology, 2006, 42(3):155.
[14] Kiefert L, Karampelas S.Use of the Raman spectrometer in gemmological laboratories:Review[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy, 2011, 80(1):119-124. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21530372
[15] Häanni H A, Kiefert L, Chalain J P, et al.A Raman mi-croscope in the gemmological laboratory:First experiences of application[J].Journal of Gemmology, 1997, 25(6):394-406. doi: 10.15506/JoG.1997.25.6.394
[16] 陈学军, 王以群, 毛荐.天然与合成紫晶的光谱学特征及其呈色机理[J].华东理工大学学报, 2011, 37(3):320-324. doi: 10.3969/j.issn.1006-3080.2011.03.012
Chen X J, Wang Y Q, Mao J.Spectral characteristics and coloration mechanism of natural and synthetic amethyst[J].Journal of East China University of Science and Technology, 2011, 37(3):320-324. doi: 10.3969/j.issn.1006-3080.2011.03.012
[17] 曹盼, 虞澜, 祖恩东.天然水晶和水热法合成水晶的拉曼光谱分析[J].光散射学报, 2017, 29(1):50-53. http://d.old.wanfangdata.com.cn/Periodical/gssxb201701009
Cao P, Yu L, Zu E D.Study on Raman spectrum of natural crystal and synthetic crystal by hydrothemal method[J].The Journal of Light Scattering, 2017, 29(1):50-53. http://d.old.wanfangdata.com.cn/Periodical/gssxb201701009
[18] 周丹怡, 陈华, 陆太进, 等.基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系[J].岩矿测试, 2015, 34(6):652-658. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.008
Zhou D Y, Chen H, Lu T J, et al.Study on the relationship between the relative content of moganite and the crystallinity of quarzite jade by Raman scattering spectroscopy, infared absorption spectroscopy and X-ray diffraction techniques[J].Rock and Mineral Analysis, 2015, 34(6):652-658. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.008
[19] 刘亚非, 王立社, 魏小燕, 等.应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征[J].岩矿测试, 2016, 35(1):48-55. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.009
Liu Y F, Wang L S, Wei X Y, et al.Study on the mineralogical properties of an unknown Ti-Zr-U oxide using EPMA, SEM, Raman spectroscopy and EBSD techniques[J].Rock and Mineral Analysis, 2016, 35(1):48-55. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.009
[20] 胡哲, 郭颖.粉色水晶内针状包裹体的成分与分布特征研究[J].岩矿测试, 2018, 37(3):306-312. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709150152
Hu Z, Guo Y.Study on the component and distribution characteristics of needle like inclusions in rose quarz[J].Rock and Mineral Analysis, 2018, 37(3):306-312. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709150152
[21] Liu X L, Zhang X, Lin M L, et al.Different angle-resolved polarization configurations of Raman spectroscopy:A case on the basal and edge plane of two-dimensional materials[J].Chinese Physics B, 2017, 26(6):067802. doi: 10.1088/1674-1056/26/6/067802
[22] Bates J B, Quist A S.Polarized Raman spectra of β-quartz[J].The Journal of Chemical Physics, 1972, 56(4):1528-1533. doi: 10.1063/1.1677402
[23] Zhang X, Han W P, Wu J B, et al.Raman spectroscopy of shear and layer breathing modes in multilayer MoS2[J].Physical Review B, 2013, 87(11):115413. doi: 10.1103/PhysRevB.87.115413
[24] Islam M M, Datchi F.Polarized Raman Spectra of α-quartz[J].International Letters of Chemistry, Physics and Astronomy, 2015, 56:91-98. doi: 10.18052/www.scipress.com/ILCPA.56.91
[25] Aines R D, Rossman G R.Water in minerals? A peak in the infrared[J].Journal of Geophysical Research:Solid Earth, 1984, 89(B6):4059-4071. doi: 10.1029/JB089iB06p04059
[26] Bell D R, Rossman G R.Water in Earth's mantle:The role of nominally anhydrous minerals[J].Science, 1992, 255(5050):1391-1397. doi: 10.1126/science.255.5050.1391
[27] Rossman G R.Studies of OH in nominally anhydrous mi-nerals[J].Physics and Chemistry of Minerals, 1996, 23(4-5):299-304.
[28] Thomas S M, Koch-Müller M, Reichart P, et al.IR calibrations for water determination in olivine, γ-GeO2, and SiO2 polymorphs[J].Physics and Chemistry of Minerals, 2009, 36(9):489-509. doi: 10.1007/s00269-009-0295-1
[29] Müller A, Kochmüller M.Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway[J].Mineralogical Magazine, 2009, 73(4):569-583. doi: 10.1180/minmag.2009.073.4.569
[30] Scott J F, Porto S P S.Longitudinal and transverse op-tical lattice vibrations in quartz[J].Physical Review, 1967, 161(3):903-910. doi: 10.1103/PhysRev.161.903
[31] Bailey S W, Bell R A, Peng C J.Plastic deformation of quartz in nature[J].Geological Society of America Bulletin, 1958, 69(11):1443-1466. doi: 10.1130/0016-7606(1958)69[1443:PDOQIN]2.0.CO;2
[32] Blacic J D, Christie J M.Plasticity and hydrolytic wea-kening of quartz single crystals[J].Journal of Geophysical Research:Solid Earth, 1984, 89(B6):4223-4239. doi: 10.1029/JB089iB06p04223
[33] Morrison-Smith D J, Paterson M S, Hobbs B E.An electron microscope study of plastic deformation in single crystals of synthetic quartz[J].Tectonophysics, 1976, 33(1-2):43-79. doi: 10.1016/0040-1951(76)90051-2