Evaluation of Data Quality on the Detection of Heavy Metals in Soils by Atomic Absorption Spectrometry or Atomic Fluorescence Spectrometry and X-ray Fluorescence Spectrometry in Ecological Environment Monitoring
-
摘要: 当前我国生态环境监测工作中,测定土壤重金属等无机元素全量所采用的标准方法主要为原子吸收光谱法(AAS)、原子荧光光谱法(AFS)和波长色散X射线荧光光谱法(WDXRF)等。为掌握AAS、AFS和WDXRF等方法测试结果的有效性和可比性,本文选取了20个来自全国不同区域、不同类型的实际土壤样品,通过盲样方式插入国家土壤环境监测任务样品批次中,分发至3~5个实验室,采用AAS/AFS、WDXRF和便携式X射线荧光光谱法(p-XRF)平行测定Cr、Ni、Cu、Zn、As、Hg、Cd、Pb、V和Mn十个元素全量。结果表明:元素含量水平分布均匀(在≤ 1.0、1.0~2.0、2.0~10.0及>10.0水平均有分布);85%以上样品Cr、Ni、Cu、Zn和Pb元素WDXRF方法的实验室间相对偏差(RD)更理想,60%样品As元素AFS方法的RD更优,元素含量对WDXRF方法的RD有更明显影响。总体上,AAS/AFS和WDXRF两类方法实验室间精密度控制水平均较高,WDXRF法更理想。进一步分析AAS/AFS和WDXRF方法间平行性(以这两类方法测试结果的相对偏差RD'进行评价),Cr、Ni、Cu和Zn元素的RD'基本低于20%,As和Pb元素80%以上的RD'低于20%,Pearson相关性和线性关系分析表明这两类方法有较高的可比性;另外,Cr、Ni、Cu、Zn、Pb和As元素的p-XRF与AAS/AFS方法测试结果也有较理想的可比性。本研究认为,AAS/AFS和WDXRF两类方法具有等同测试效果,实际监测工作中Cd、Hg等含量较低元素宜选择检出限较低的AAS/AFS法;因WDXRF方法的前处理过程简单易控,大批量土壤分析中使用该方法更加高效,在特定实验条件下p-XRF方法也有可接受的定量效果。
-
关键词:
- 土壤 /
- 重金属元素 /
- 原子吸收光谱法 /
- 原子荧光光谱法 /
- 波长色散X射线荧光光谱法 /
- 便携式X射线荧光光谱法 /
- 相对偏差
Abstract:BACKGROUNDIn current ecological environmental monitoring, the standard methods used to determine the total contents of inorganic elements, such as heavy metals in soil, include atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) and wavelength dispersive X-ray fluorescence spectrometry (WDXRF). OBJECTIVESTo evaluate the quality, validity and mutual comparability of the results obtained by different analytical methods. METHODSTwenty actual soil samples of different types from different regions in China were selected and inserted into the national soil environmental monitoring sample batch blind, and sent to 3-5 laboratories. AAS/AFS, WDXRF and portable X-ray fluorescence spectrometry (p-XRF) were used to determine the total amount of Cr, Ni, Cu, Zn, As, Hg, Cd, Pb, V and Mn in parallel. RESULTSThe content of these elements was equally distributed at levels of ≤ 1.0, 1.0-2.0, 2.0-10.0, and 10.0. The results show that 85% samples had better inter-laboratory relative deviation (RD) of the WDXRF method in terms of Cr, Ni, Cu, Zn and Pb. On the other hand, 60% samples had better RD using AFS method for the As determination. Element content had more obvious effect on RD for WDXRF method. Generally, the inter-laboratory precision control was good for both AAS/AFS and WDXRF methods, and the WDXRF method was more desirable. Through further analysis of the parallelism between AAS/AFS and WDXRF methods (evaluated as the relative deviation RD' of the analytical results of these two methods), it showed that almost all the RD' of Cr, Ni, Cu and Zn was less than 20%, and more than eighty percent RD' of As and Pb was less than 20%. The results of Pearson correlation and linear relationship analysis also show that the analytical results of two methods were highly comparable. Additionally, there was also good comparability between the results of AAS/AFS and p-XRF methods for determination of Cr, Ni, Cu, Zn, Pb and As. CONCLUSIONSAAS/AFS method and WDXRF method have equivalent test results. In actual monitoring task, the determination of Cd and Hg with lower contents should be determined by AAS/AFS which have lower detection limits. WDXRF should be chosen for the analysis large quantities of soil. Under specific experimental conditions, the p-XRF method also can obtain an acceptable quantitative results. -
-
表 1 研究样品中各元素含量
Table 1. Average concentrations of elements in research samples
样品编号 Cr
(mg/kg)Ni
(mg/kg)Cu
(mg/kg)Zn
(mg/kg)As
(mg/kg)Pb
mg/kg)Cd
(mg/kg)Hg
(mg/kg)V
(mg/kg)Mn
(mg/kg)土壤背景值中位值 57.3 24.9 20.7 68.0 9.60 23.5 0.079 0.038 76.8 540 1# 80.3 35.5 49.5 200.4 11.2 66.1 1.50 0.25 108 697 2# 76.3 32.3 28.6 89.4 9.8 30.3 0.14 0.03 93.8 599 3# 112.9 52.5 67.7 213.3 23.7 78.3 0.77 0.39 138 814 4# 63.5 30.1 19.3 94.2 3.0 32.4 0.19 0.02 107 718 5# 79.7 34.2 38.1 88.5 17.5 35.1 0.20 0.17 133 448 6# 81.8 35.2 23.6 87.1 6.0 22.7 0.10 0.05 107 736 7# 284.6 149.0 66.3 123 3.0 14.6 0.09 0.05 211 532 8# 75.7 33.2 37.5 101 64.1 22.5 0.20 0.05 153 730 9# 70.4 23.9 22.1 46.8 8.6 24.2 0.04 0.10 81.9 336 10# 58.7 26.4 29.6 182 15.4 101 0.31 0.03 160 3281 11# 47.0 24.0 17.7 49.1 8.5 19.8 0.10 0.03 83.3 604 12# 75.5 35.3 44.0 167.7 7.9 28.9 0.14 0.08 93.5 783 13# 66.3 28.0 26.4 64.7 11.5 23.3 / / 87.4 645 14# 69.9 34.1 31.6 87.5 10.9 26.9 0.17 0.08 99.2 762 15# 63.1 27.5 20.8 61.5 8.7 19.2 0.08 0.03 82.2 544 16# 51.5 17.3 15.9 44.2 6.7 22.3 / / 61.9 354 17# 95.8 50.9 44.0 139.8 12.5 39.7 0.97 0.21 247 673 18# 5587 4642 119 232 6.2 14.3 0.11 0.18 253 2495 19# 67.8 16.7 13.0 101.1 18.5 27.0 0.40 0.11 109 210 20# 65.5 30.4 23.8 74.2 8.6 22.5 0.05 0.03 85.9 564 表 2 AAS/AFS和WDXRF两种方法实验室间相对偏差
Table 2. RD values of AAS/AFS and WDXRF in different laboratories
测定方法 统计值 实验室间相对偏差(%) Cr Ni Cu Zn As Pb AAS/AFS 最小值 2.09 1.71 2.14 1.85 2.04 2.84 80% 11.83 8.87 10.54 9.06 15.08 23.17 85% 12.91 8.98 11.71 9.84 17.80 23.89 90% 13.07 9.06 12.77 13.45 21.03 27.69 95% 13.82 11.35 19.94 15.43 22.80 28.12 最大值 14.79 20.98 20.82 24.68 27.37 28.53 WDXRF 最小值 0.62 1.22 0.82 0.70 3.45 1.93 80% 3.39 3.34 4.76 4.47 11.19 7.82 85% 4.96 4.74 7.13 4.85 13.94 8.46 90% 5.18 4.76 8.43 5.95 18.63 10.16 95% 5.58 6.42 12.26 6.05 20.25 11.56 最大值 6.13 22.57 12.26 22.78 21.45 16.31 表 3 实验室间相对偏差合格率结果统计
Table 3. Pass rate of RD control between the different laboratories
元素 测定方法合格率(%) WDXRF AAS/AFS Cr 100.0 95.0 Ni 95.0 90.0 Cu 95.0 90.0 Zn 95.0 90.0 As 90.0 85.0 Pb 100.0 85.0 Cd - 95.0 Hg - 95.0 V 55.0 - Mn 95.0 - 注:“-”表示该方法下无此元素的测定结果,故无统计结果。 表 4 AAS/AFS与WDXRF方法测试结果Pearson相关性分析
Table 4. Pearson relevance analysis of AAS/AFS and WDXRF measured values
Cr Ni 测定方法 项目 WDXRF 测定方法 项目 WDXRF AAS/AFS Pearson相关性
显著性(双侧)
N1.000**
.000
18AAS/AFS Pearson相关性
显著性(双侧)
N1.000**
.000
18Cu Zn 测定方法 项目 WDXRF 测定方法 项目 WDXRF AAS/AFS Pearson相关性
显著性(双侧)
N0.945**
.000
18AAS/AFS Pearson相关性
显著性(双侧)
N0.911**
.000
18As Pb 测定方法 项目 WDXRF 测定方法 项目 WDXRF AAS/AFS Pearson相关性
显著性(双侧)
N0.967**
.000
18AAS/AFS Pearson相关性
显著性(双侧)
N0.929**
.000
18注:标注“**”表示在0.01水平(双侧)上显著相关。 -
[1] 庄国泰.我国土壤污染现状与防控策略[J].中国科学院院刊, 2015, 30(4):477-483. http://d.old.wanfangdata.com.cn/Periodical/zghgmy201709144
Zhuang G T.Current situation of national soil pollution and strategies on prevention and control[J].Bulletin of Chinese Academy of Sciences, 2015, 30(4):477-483. http://d.old.wanfangdata.com.cn/Periodical/zghgmy201709144
[2] 焦位雄, 杨虎德, 冯丹妮, 等.Cd、Hg、Pb胁迫下不同作物可食部分重金属含量及累积特征研究[J].农业环境科学学报, 2017, 36(9):1726-1733. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201709007
Jiao W X, Yang H D, Feng D N, et al.Heavy metal content and accumulation characteristics in the edible parts of different crops under Cd, Hg, Pb and stress[J].Journal of Agro-Environment Science, 2017, 36(9):1726-1733. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201709007
[3] 郭书海, 吴波, 张玲妍, 等.农产品重金属超标风险:发生过程与预警防控[J].农业环境科学学报, 2018, 37(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201612001
Guo S H, Wu B, Zhang L Y, et al.Risk of heavy metal concentration in agricultural product exceeding the safe standard:Occurrence process, forewarning and control[J].Journal of Agro-Environment Science, 2018, 37(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201612001
[4] 金晓丹, 罗栋源, 马华菊, 等.广西某铅锌矿区土壤镉、铅、砷形态分布对水稻重金属的影响[J].西南农业学报, 2018, 31(6):1293-1299. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201806031
Jin X D, Luo D Y, Ma H J, et al.Effect of soil Cd, Pb, As and their fractions distribution on corresponding heavy metals in rice surrounding lead-zinc mines in Guangxi Province[J].Southwest China Journal of Agricultural Sciences, 2018, 31(6):1293-1299. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201806031
[5] 钱贞兵, 孙立剑, 徐升, 等.淮河流域安徽段土壤重金属元素分布特征研究[J].岩矿测试, 2018, 37(2):193-200. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201710190168
Qian Z B, Sun L J, Xu S, et al.Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin[J].Rock and Mineral Analysis, 2018, 37(2):193-200. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201710190168
[6] 孙鹏, 李艳伟, 张连科, 等.包头市典型工业区表层土壤中重金属污染状况及其潜在生态风险研究[J].岩矿测试, 2016, 35(4):433-439. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.016
Sun P, Li Y W, Zhang L K, et al.Heavy metal pollution in topsoil from the Baotou industry area and its potential ecological risk evaluation[J].Rock and Mineral Analysis, 2016, 35(4):433-439. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.016
[7] 王腾云, 周国华, 孙彬彬, 等.福建沿海地区土壤-稻谷重金属含量关系与影响因素研究[J].岩矿测试, 2016, 35(3):295-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.013
Wang T Y, Zhou G H, Sun B B, et al.The relationship between heavy metal contents of soils and rice in coastal areas, Fujian Province, including influencing factors[J].Rock and Mineral Analysis, 2016, 35(3):295-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.013
[8] 余广学, 张金震, 王烨, 等.郑州市土壤重金属污染状况和质量评价[J].岩矿测试, 2015, 34(3):340-345. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.014
Yu G X, Zhang J Z, Wang Y, et al.Investigation and evaluation of heavy metal pollution in soil from Zhengzhou City[J].Rock and Mineral Analysis, 2015, 34(3):340-345. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.014
[9] 昝树婷.原子吸收光谱法在土壤环境监测中的应用[J].安徽农业科学, 2014, 42(36):13174-13176. http://d.old.wanfangdata.com.cn/Periodical/ahnykx201436144
Zan S T.The applications of atomic absorption spectrometry in soil environmental monitoring[J].Journal of Anhui Agricultural Sciences, 2014, 42(36):13174-13176. http://d.old.wanfangdata.com.cn/Periodical/ahnykx201436144
[10] 朱静, 雷晶, 张虞, 等.关于中国土壤环境监测分析方法标准的思考与建议[J].中国环境监测, 2019, 35(2):1-12. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201902001
Zhu J, Lei J, Zhang Y, et al.Thoughts and suggestions on environmental monitoring method standards of soil in China[J].Environmental Monitoring in China, 2019, 35(2):1-12. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201902001
[11] 杨叶琴, 赵昌平, 赵杰.微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J].理化检验(化学分册), 2019, 55(1):63-67. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201901011
Yang Y Q, Zhao C P, Zhao J.Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(1):63-67. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201901011
[12] 鲁照玲, 胡红云, 姚洪, 等.土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J].岩矿测试, 2012, 31(2):241-246. http://www.ykcs.ac.cn/article/id/ykcs_20120208
Lu Z L, Hu H Y, Yao H, et al.Study on quantitative analysis method for several heavy metals in soil sample by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):241-246. http://www.ykcs.ac.cn/article/id/ykcs_20120208
[13] 胡冠九, 陈素兰, 王光.中国土壤环境监测方法现状、问题及建议[J].中国环境监测, 2018, 34(2):10-19. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201802002
Hu G J, Chen S L, Wang G.Environmental monitoring methods for soil in China:Situation, problems and suggestions[J].Environmental Monitoring in China, 2018, 34(2):10-19. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201802002
[14] 马俊杰, 杨琦, 王业耀, 等.土壤重金属快速监测技术研究与应用进展[J].中国环境监测, 2015, 31(3):132-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc201503022
Ma J J, Yang Q, Wang Y Y, et al.Research progress of rapid monitoring technology for heavy metals in soils[J].Environmental Monitoring in China, 2015, 31(3):132-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc201503022
[15] 张霖琳, 梁宵, 加那尔别克·西里甫汗.在土壤及底泥重金属测定中不同前处理和分析方法的比较[J].环境化学, 2013, 32(2):302-306. http://d.old.wanfangdata.com.cn/Periodical/hjhx201302018
Zhang L L, Liang X, Janarbek X.Comparison of different pretreatment and analytical method of heavy metals in soil and sediment samples[J].Environmental Chemistry, 2013, 32(2):302-306. http://d.old.wanfangdata.com.cn/Periodical/hjhx201302018
[16] 龙加洪, 谭菊, 吴银菊, 等.土壤重金属含量测定不同消解方法比较研究[J].中国环境监测, 2013, 29(1):123-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc201301025
Long J H, Tan J, Wu Y J, et al.A comparative study on the detection of heavy metal in soil with different digestion methods[J].Environmental Monitoring in China, 2013, 29(1):123-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjjc201301025
[17] 刀谞, 霍晓芹, 张霖琳, 等.我国土壤中主要元素监测技术及难点[J].中国环境监测, 2018, 34(5):12-21. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201805003
Dao X, Huo X Q, Zhang L L, et al.Over view of main soil element heavy metal monitoring technology and difficulties in China[J].Environmental Monitoring in China, 2018, 34(5):12-21. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201805003
[18] 李海峰, 王庆仁, 朱永官.土壤重金属测定两种前处理方法的比较[J].环境化学, 2006, 25(1):108-109. http://d.old.wanfangdata.com.cn/Periodical/hjhx200601027
Li H F, Wang Q R, Zhu Y G.Comparison of two pretreatment methods for determination of heavy metals in soil[J].Environmental Chemistry, 2006, 25(1):108-109. http://d.old.wanfangdata.com.cn/Periodical/hjhx200601027
[19] 刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
[20] 任东, 沈俊, 任顺, 等.一种面向土壤重金属含量检测的X射线荧光光谱预处理方法研究[J].光谱学与光谱分析, 2018, 38(12):3934-3940. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201812047
Ren D, Shen J, Ren S, et al.An X-ray fluorescence spectroscopy pretreatment method for detection of heavy metal content in soil[J].Spectroscopy and Spectral Analysis, 2018, 38(12):3934-3940. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201812047
[21] 彭洪柳, 杨周生, 赵婕, 等.高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J].农业环境科学学报, 2018, 37(7):1386-1395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201807011
Peng H L, Yang Z S, Zhao J, et al.Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J].Journal of Agro-Environment Science, 2018, 37(7):1386-1395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201807011
[22] 邝荣禧, 胡文友, 何跃, 等.便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J].土壤, 2015, 47(3):589-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503025
Kuang R X, Hu W Y, He Y, et al.Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural[J].Soils, 2015, 47(3):589-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503025
[23] 王宇游, 夏新, 米方卓, 等.《土壤环境质量标准》中六种重金属测定精密度控制指标研究[J].土壤通报, 2014, 45(6):1500-1504. http://d.old.wanfangdata.com.cn/Periodical/trtb201406033
Wang Y Y, Xia X, Mi F Z, et al.Study on the indexes of precision quality control for 6 heavy metals in 〈Soil Environmental Quality Standard〉[J].Chinese Journal of Soil Science, 2014, 45(6):1500-1504. http://d.old.wanfangdata.com.cn/Periodical/trtb201406033
[24] 夏新, 陈纯, 米方卓, 等.原子荧光法测定土壤中砷的质量控制评价标准研究[J].中国环境监测, 2015, 31(3):19-23. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201503004
Xia X, Chen C, Mi F Z, et al.Study of evaluation standards of quality control of As in soil by atomic fluorescence spectrometry[J].Environmental Monitoring in China, 2015, 31(3):19-23. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201503004
[25] 中国环境监测总站.质量体系文件[M].北京:中国环境科学出版社, 1990:87-91.
China Environmental Monitoring Station.Quality System Document[M].Beijing:China Environmental Science Press, 1990:87-91.
[26] 国家环境保护总局, 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社, 1990:87-91.
State Environmental Protection Administration, China Environmental Monitoring Station. Background Values of Soil Elements in China[M].Beijing:China Environmental Science Press, 1990:87-91.
[27] 刘江斌, 党亮, 殷桃刚, 等.粉末压片-X射线荧光光谱法测定土壤中的铜铅锌砷锑钴铬镍等重金属元素[J].分析测试技术与仪器, 2015, 21(1):42-46. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201501008
Liu J B, Dang L, Yin T G, et al.Determination of heavy metals elements copper, lead, zinc, arsenic, antimony, cobalt, chromium, and nickel in soil by X-ray fluorescence spectrometry with powder pelleting[J].Analysis and Testing Technology and Instruments, 2015, 21(1):42-46. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201501008
[28] 张环月, 季守华, 李春艳.X射线荧光光谱法测定铬、钒、钛共存的钛合金中12种元素[J].冶金分析, 2014, 34(5):30-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201405006
Zhang H Y, Ji S H, Li C Y.Determination of twelve elements coexisting with chromium, vanadium and titanium in titanium alloys by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2014, 34(5):30-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201405006
[29] 冉景, 王德建, 王灿, 等.便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J].光谱学与光谱分析, 2014, 34(11):3113-3118. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201411054.htm
Ran J, Wang D J, Wang C, et al.Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J].Spectroscopy and Spectral Analysis, 2014, 34(11):3113-3118. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201411054.htm
[30] 陈素兰, 胡冠九.全国土壤污染状况调查样品元素分析测试技术探讨[J].中国环境监测, 2007, 23(5):6-10. http://d.old.wanfangdata.com.cn/Periodical/zghjjc200705004
Chen S L, Hu G J.A preliminarry discussion on the analysis methods for inorganic elements used in the national investigation program of soil pollution[J].Environmental Monitoring in China, 2007, 23(5):6-10. http://d.old.wanfangdata.com.cn/Periodical/zghjjc200705004
-