Determination of Mercury and Arsenic in Oil-bearing Core by Soxhelt Extraction-Atomic Fluorescence Spectrometry
-
摘要: 原油对测定含油岩心中的汞和砷有很大影响,目前去除原油等有机物的方法主要有高温烧制、强酸高温氧化等,要求反应温度较高,会造成汞和砷的损失而使测定结果偏低。本文采用索氏提取法,以氯仿作为提取剂在75℃下低温提取分离岩心中的原油,再用50%的王水溶解剩余样品,原子荧光光谱法测定汞和砷的含量。该方法对汞和砷的检出限分别为0.003mg/kg和0.10mg/kg,相对标准偏差分别为7.3%和5.1%,加标回收率均大于92.5%。与传统方法相比较,该方法避免了由于原油的疏水性造成样品与王水接触不充分、样品分解不完全和反应温度过高导致汞元素损失的问题,测定汞的相对标准偏差由33.0%降低至7.3%,测定砷的相对标准偏差由25.0%提高至5.1%,为含油岩心中其他元素的检测提供了借鉴。Abstract:
BACKGROUNDCrude oil had a great influence on the determination of mercury and arsenic in oil-bearing cores by atomic fluorescence spectrometry. At present, the main methods of removing organic matter such as crude oil are high-temperature firing and high-temperature oxidation with strong acid. In these methods, high reaction temperature will cause loss of mercury and arsenic, resulting in lower results. OBJECTIVESTo develop a separation method with low operating temperature. METHODSMercury and arsenic in oil-bearing cores were determined by atomic fluorescence spectrometry with Soxhlet extraction at a low temperature for this method of 75℃ and the remaining part was decomposed by 50% aqua regia. RESULTSThe detection limits were 0.003mg/kg and 0.10mg/kg for mercury and arsenic, respectively. The relative standard deviations were 7.3% and 5.1%, respectively. The relative standard deviation of mercury decreased from 33.0% to 7.3%, and the relative standard deviation of arsenic decreased from 25.0% to 5.1%. The recoveries of standard addition were greater than 92.5%. CONCLUSIONSCompared with traditional methods, this method avoided the problems of insufficient contact between samples and aqua regia due to the hydrophobicity of crude oil, incomplete decomposition of samples and mercury loss due to excessive reaction temperature. The proposed method provides a reference for the determination of other elements in oil-bearing cores. -
Key words:
- oil-bearing core /
- Hg /
- As /
- Soxhelt extraction /
- aqua regia /
- atomic fluorescence spectrometry
-
表 1 经过提取和未经过提取的汞和砷的测定结果对比
Table 1. Comparison of analytical results of Hg and As in the extracted and unextracted samples
样品编号 氯仿沥青含量(%) Hg测定值(mg/kg) As测定值(mg/kg) 未经过提取 经过提取 未经过提取 经过提取 SY-1 0.078 0.065 0.105 19.3 24.4 SY-2 0.134 0.044 0.114 16.4 26.5 SY-3 0.033 0.076 0.108 18.3 22.4 SY-4 0.254 0.049 0.128 12.3 31.5 表 2 不同溶剂提取原油的结果对比
Table 2. Comparison of crude oil extracted by different solvents
样品编号 氯仿
(g)相对提取率
(%)石油醚
(g)相对提取率
(%)正己烷
(g)相对提取率
(%)SY-1 0.0777 100 0.0748 96.3 0.0722 92.9 SY-2 0.1336 100 0.1242 93.0 0.1205 90.2 SY-3 0.0328 100 0.0302 92.1 0.0284 86.6 SY-4 0.2536 100 0.2311 91.1 0.2206 87.0 表 3 精密度实验结果
Table 3. Precision tests of the method
样品处理 元素 分次测定值(mg/kg) RSD(%) 未经提取的SY-1 Hg 0.065 0.038 0.044 0.07
30.061 0.086 0.03533.0 As 15.3 11.4 14.2 18.7
17.0 20.1 9.6725.0 高氯酸处理的SY-1 Hg 0.089 0.082 0.068 0.073
0.089 0.094 0.07115.0 As 22.1 21.6 18.7 20.7
22.2 23.6 18.59.0 经过提取的SY-1 Hg 0.105 0.098 0.102 0.112
0.104 0.092 0.1147.3 As 24.4 26.5 23.2 23.5
25.6 24.1 25.95.1 表 4 加标回收实验结果
Table 4. Spiked recovery tests of the method
实验序号 元素 样品浓度
(mg/kg)加标浓度
(mg/kg)测得浓度
(mg/kg)回收率
(%)1 Hg 0.105 0.200 0.296 95.5 As 24.4 50.0 72.4 96.0 2 Hg 0.105 0.100 0.199 94.0 As 24.4 25.0 48.1 94.8 3 Hg 0.105 0.040 0.142 92.5 As 24.4 10.0 33.8 94.0 -
[1] 卢双舫, 李俊乾, 张鹏飞, 等.页岩油储集层微观孔喉分类与分级评价[J].石油勘探与开发, 2018, 45(3):436-444. http://d.old.wanfangdata.com.cn/Periodical/syktykf201803008
Lu S F, Li J Q, Zhang P F, et al.Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J].Petroleum Exporation and Development, 2018, 45(3):436-444. http://d.old.wanfangdata.com.cn/Periodical/syktykf201803008
[2] 阮东亮, 盘思伟, 韦正乐, 等.砷对商业V2O5-WO3/TiO2催化剂脱硝性能的影响[J].化工进展, 2014, 33(4):925-929. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201404023
Ruan D L, Pan S W, Wei Z L, et al.Effect of arsenic on de-NO efficiency over commercial V2O5-WO3/TiO2 catalyst[J].Chemical Industry and Engineering Progress, 2014, 33(4):925-929. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201404023
[3] 周曙光, 周克法, 王金林, 等.基于晕状特征提取的化探异常信息识别及其在成矿预测中的应用[J].干旱区地理, 2015, 38(7):763-769. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201504014
Zhou S G, Zhou K F, Wang J L, et al.Identifying of geochemical anomalies according to the Halo pattern of trace elements for mineral exploration[J].Arid Land Geography, 2015, 38(7):763-769. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201504014
[4] 尚玉俊, 王秀莉, 宋丹丹, 等.萃取分离-碘量自动电位滴定法测定三氧化二锑中砷[J].冶金分析, 2016, 36(3):31-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603007
Shang Y J, Wang X L, Song D D, et al.Determination of arsenic in antimony trioxide by automatic potentiometric-iodometry with extraction separation[J].Metallurgical Analysis, 2016, 36(3):31-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603007
[5] 孙蕾, 郭金喜.LC-AFS法测定新疆阿勒泰狗鱼中的无机汞、甲基汞、乙基汞[J].食品工业, 2018, 39(3):325-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201803086
Sun L, Guo J X.Determination of inorganic mercury, methylmercury, ethylmercury in Xinjiang Aletai Pike by LC-AFS[J].The Food Industry, 2018, 39(3):325-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgy201803086
[6] 陕红, 袁志华, 刘丹丹, 等.HPLC-ICP-MS法测定农业废水中有机砷与无机砷的方法研究[J].农业资源与环境学报, 2014, 31(2):197-201. http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201402016
Shan H, Yuan Z H, Liu D D, et al.Analysis of organic and inorganic arsenic in waste water of agricultural environment by high performance liquid chromatography and inductively coupled plasma mass spectrometry[J].Journal of Agricultural Resources and Environment, 2014, 31(2):197-201. http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201402016
[7] 黄会秋, 黄莉来, 夏坪, 等.水相衍生-气相色谱-质谱法同时测定水产品中甲基汞和无机砷[J].色谱, 2016, 34(9):918-924. http://d.old.wanfangdata.com.cn/Periodical/sp201609013
Huang H Q, Huang L L, Xia P, et al.Simultaneous determination of methylmercury and inorganic arsenics in aquatic products by gas chromatography-mass spectrometry with aqueous derivatization[J].Chinese Journal of Chromatography, 2016, 34(9):918-924. http://d.old.wanfangdata.com.cn/Periodical/sp201609013
[8] 杜米芳, 聂富强, 杜丽丽, 等.电感耦合等离子体原子发射光谱法测定船用钢中砷锡锑[J].冶金分析, 2017, 37(2):70-75. http://d.old.wanfangdata.com.cn/Periodical/yjfx201702015
Du M F, Nie F Q, Du L L, et al.Determination of arsenic, tin and antimony in steel for ship by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2017, 37(2):70-75. http://d.old.wanfangdata.com.cn/Periodical/yjfx201702015
[9] 杨理勤, 陈占生, 谢璐, 等.卡林型金矿金砷成分分析标准物质研制[J].岩矿测试, 2018, 37(2):209-216. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711210183
Yang L Q, Chen Z S, Xie L, et al.Preparation of gold and arsenic certified reference materials for chemical composition analysis in Carlin-type gold deposits[J].Rock and Mineral Analysis, 2018, 37(2):209-216. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711210183
[10] 苟体忠, 张文华, 王艳, 等.微波消解-氢化物发生-冷原子荧光光谱法快速测定水系沉积物中的总汞[J].分析试验室, 2015, 34(12):1457-1459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201512023
Gou T Z, Zhang W H, Wang Y, et al.Rapid determination of total mercury contents in aquo-system sediment by microwave digestion and hydride generation-cold atomic fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2015, 34(12):1457-1459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201512023
[11] Kumar K R, Madhavi K, Shyamala P, et al.A novel sy-nergetic salt-and acid-induced ligandless mixed micelle cloud point extraction of ultratrace levels of Cd, Hg, Bi, and Tl from petrochemical effluents followed by ETAAS determination[J].Atomic Spectroscopy, 2018, 39(3):118-125.
[12] Suvarapu L N, Baek S O.Recent studies on the specia-tion and determination of mercury in different environmental matrices using various analytical techniques[J].International Journal of Analytical Chemistry, 2017, 2017:3624015. https://www.researchgate.net/publication/321192650_Recent_Studies_on_the_Speciation_and_Determination_of_Mercury_in_Different_Environmental_Matrices_Using_Various_Analytical_Techniques
[13] Yuksel B, Arica E.Assessment of toxic, essential, and other metal levels by ICP-MS in Lake Eymir and Mogan in Ankara, Turkey:An environmental application[J].Atomic Spectroscopy, 2018, 39(5):179-184.
[14] 吕天峰, 袁懋, 吕怡兵.测汞仪直接测定空气颗粒物中的总汞[J].中国测试, 2016, 42(12):42-44. doi: 10.11857/j.issn.1674-5124.2016.12.009
Lü T F, Yuan M, Lü Y B.Direct determination of total mercury in air particulates by mercury analyzer[J].China Measurement & Test, 2016, 42(12):42-44. doi: 10.11857/j.issn.1674-5124.2016.12.009
[15] 聂黎行, 张烨, 朱俐, 等.便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J].光谱学与光谱分析, 2017, 37(10):3225-3228. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201710046
Nie L X, Zhang Y, Zhu L, et al.Fast nondestructive analysis of content of mercury and aesenic and homogeneity of Niuhuang Qinxin pills by portable X-ray florescence spectrometry[J].Spectrometry and Spectral Analysis, 2017, 37(10):3225-3228. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201710046
[16] 苏明跃, 臧世阳, 冯爽, 等.顺序注射-氢化物发生-原子荧光光谱法测定矿石中砷和汞含量[J].理化检验(化学分册), 2013, 49(8):943-945. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201308014
Su M Y, Zang S Y, Feng S, et al.Sequential injection-HG-AFS determination of arsenic and mercury in ores[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(8):943-945. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201308014
[17] 倪润祥, 雒昆利.湿消解-原子荧光法测定煤中硒和砷[J].光谱学与光谱分析, 2015, 35(5):1404-1408. doi: 10.3964/j.issn.1000-0593(2015)05-1404-05
Ni R X, Luo K L.Deterniation of total selenium and arsenic in coal by wet digestion hydride generation atomic fluorescence spectrometry (HG-AFS)[J].Spectroscopy and Spectral Analysis, 2015, 35(5):1404-1408. doi: 10.3964/j.issn.1000-0593(2015)05-1404-05
[18] 于跃, 高亚丽, 赵雪, 等.悬浮颗粒物浓度对溢油沉潜过程影响的试验研究[J].海洋环境科学, 2017, 36(6):858-863. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201706010
Yu Y, Gao Y L, Zhao X, et al.A laboratory study on the effect of suspended particulate matter concentration on the submerging and sinking process of oil spill[J].Marine Environment Science, 2017, 36(6):858-863. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201706010
[19] 罗荣根.应用固体测汞仪直接测定载金炭中的总汞[J].岩矿测试, 2016, 35(4):420-424. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.014
Luo R G.Detrermination of total mercury in gold-loaded carbon by solid mercury analyzer[J].Rock and Mineral Analysis, 2016, 35(4):420-424. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.014
[20] 杨常青, 张双双, 吴楠, 等.微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J].岩矿测试, 2016, 35(5):481-487. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.006
Yang C Q, Zhang S S, Wu N, et al.Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J].Rock and Mineral Analysis, 2016, 35(5):481-487. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.006
[21] 刘景龙, 罗守娟.原子荧光光谱法测定汞标准系列溶液稳定性的探讨[J].中国无机分析化学, 2018, 8(4):61-64. doi: 10.3969/j.issn.2095-1035.2018.04.015
Liu J L, Luo S J.Determination of the mercury standard solution serious stability by atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):61-64. doi: 10.3969/j.issn.2095-1035.2018.04.015
[22] 江朝华, 陈旭明.茶叶及大米中有机氯农药残留量前处理方法的研究[J].包装与食品机械, 2018, 36(3):59-61. doi: 10.3969/j.issn.1005-1295.2018.03.013
Jiang C H, Chen X M.Research on the pretreatment methods for determination of residual organochlorine pesticides in tea and rice[J].Packaging and Food Machinery, 2018, 36(3):59-61. doi: 10.3969/j.issn.1005-1295.2018.03.013
[23] 袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
Yuan Y H, Yin C H, Yuan Z H, et al.Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
[24] 吴伟.酸化返排液无害化处理技术研究[J].石油与天然气化工, 2017, 46(3):110-114. doi: 10.3969/j.issn.1007-3426.2017.03.022
Wu W.A study on acidizing flowback water treatment[J].Chemical Engineering of Oil & Gas, 2017, 46(3):110-114. doi: 10.3969/j.issn.1007-3426.2017.03.022
[25] 黄风林, 王迪, 李荣春.石油产品酸含量测定标准的有效性研究[J].石油与天然气化工, 2017, 46(2):89-93. doi: 10.3969/j.issn.1007-3426.2017.02.018
Huang F L, Wang D, Li R C.Study on the validity of the standard for determination of acid content in petroleum product[J].Chemical Engineering of Oil & Gas, 2017, 46(2):89-93. doi: 10.3969/j.issn.1007-3426.2017.02.018
[26] 陈莎莎, 朱信旭, 贾望鲁, 等.用于单体氢同位素分析的混合溶剂洗脱5Å分子筛吸附正构烷烃的方法[J].岩矿测试, 2017, 36(4):413-419. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201611030166
Chen S S, Zhu X X, Jia W L, et al.Elution of adsorbed n-alkanes by 5Å molecular sieve using solvent mixtures for compound-specific hydrogen isotopic analysis[J].Rock and Mineral Analysis, 2017, 36(4):413-419. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201611030166
[27] Tesfaye B, Tefera T.Extraction of essential oil from Neem seed by using Soxhlet extraction methods[J].International Journal of Advanced Engineering, Management and Science, 2017, 3(6):646-650. doi: 10.24001/ijaems.3.6.5
[28] 潘爱芳, 黎荣剑, 赫英, 等.鄂尔多斯盆地石油氯仿沥青稀土元素地球化学特征[J].大地构造与成矿学, 2007, 31(2):245-250. doi: 10.3969/j.issn.1001-1552.2007.02.014
Pan A F, Li R J, He Y, et al.Geochemical features of the rare earth elements in petroleum bitumen from the Ordos Basin[J].Geotectonica et Metallogenia, 2007, 31(2):245-250. doi: 10.3969/j.issn.1001-1552.2007.02.014
[29] 涂先新, 赵红静, 李双林, 等.高分子量烃油气化探方法的模拟实验研究——以黄海沉积物为例[J].岩矿测试, 2015, 34(6):684-691. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.013
Tu X X, Zhao H J, Li S L, et al.Application of high molecular weight hydrocarbon to geochemical exploration for oil and gas with a simulated method using the sediment of the Yellow Sea as an example[J].Rock and Mineral Analysis, 2015, 34(6):684-691. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.013
[30] Chen T, Jin Y Y, Qiu X P, et al.A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste[J].Journal of the Air & Waste Management Association, 2015, 65:278-286. http://cn.bing.com/academic/profile?id=0fb5bb6ee8043dbd4c7eb8654dc0a905&encoded=0&v=paper_preview&mkt=zh-cn
[31] Dombrowski N, Teske A P, Baker B J.Expansive micro-bial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments[J].Nature Communications, 2018, 9:4999. doi: 10.1038/s41467-018-07418-0
[32] Seema S B, Suresh M T.Oxidation of clindamycin phos-phate by cerium(Ⅳ) in perchloric acid medium-A kinetic and mechanistic approach[J].Arabian Journal of Chemistry, 2017, 10:S1469-S1476. doi: 10.1016/j.arabjc.2013.04.025