Determination of 14 Trace Elements in Geochemical Samples by ICP-MS Using Kinetic Energy Discrimination Mode
-
摘要: 应用传统ICP-MS法测定勘查地球化学样品中Ag、Cd等痕量元素,基体效应和多原子离子干扰严重,准确测定的难度较大。本文基于当前ICP-MS消除干扰技术,分析了ICP-MS标准模式(STD)及动能歧视模式(KED)测定地球化学样品中Ag、Cd等14种痕量元素的有效性,通过比较这两种模式的测定效果,在此基础上确定了各元素的有效测定模式。结果表明:在KED模式下,基体元素如Zr、Nb氧化物的产率降低,基本上消除了Zr、Nb氧化物对痕量元素Ag、Cd的多原子离子干扰。KED模式提高了信噪比,降低了方法检出限,如Ag、Cd的检出限分别为0.004mg/kg、0.005mg/kg,其他12种元素的检出限也低于多目标地球化学调查76种元素分析方案中的检出限。测定痕量元素的准确度显著优于STD模式。实验中采用简单的硝酸-氢氟酸-高氯酸消解样品,残渣用王水复溶,结合KED模式下优选出干扰较小的同位素作为测定同位素,以Rh作为内标校正仪器产生的信号漂移,将样品溶液稀释至1000倍,基体效应降低至最小。本方法经国家一级标准物质的验证,测定结果与认定值相符,可为勘查地球化学提供高质量数据。Abstract:
BACKGROUNDTraditional inductively coupled plasma-mass spectrometry (ICP-MS) determination of trace elements such as Ag and Cd in geochemical samples is seriously affected by the matrix effect and multiple polyatomic ions, making it difficult to measure these elements accurately. OBJECTIVESTo compare the results of ICP-MS standard mode (STD) and kinetic energy discrimination mode (KED), and determine the valid determination modes of each element. METHODSThe samples were digested by HNO3-HF-HClO4, and the residue was dissolved in aqua regia. Under the KED mode, the isotopes with less interference were selected as the determination isotopes. Rh was used as the internal standard element to correct the signal drift, and the sample solution was diluted by 1000. Under these conditions, the matrix effect was minimized. RESULTSThe productivity of matrix elements such as Zr and Nb oxides was reduced, and the interference of oxides on Ag and Cd was minimized under the KED mode. The KED mode improved the signal-to-noise ratio and reduced the detection limits of this method with Ag and Cd, detection limits of 0.004mg/kg and 0.005mg/kg, respectively. The detection limits of the other 12 elements were also lower than those of 76 element analysis schemes in a multi-objective geochemical survey. The accuracy of determination of trace elements was significantly better than that of the STD mode. CONCLUSIONSThe method has been verified by the first-class national reference material and the analytical results are in good agreement with the certified values. The method provides high-quality data for exploration geochemistry. -
Key words:
- rock /
- soil /
- sediment /
- Ag /
- Cd /
- acid dissolution /
- inductively coupled plasma-mass spectrometry /
- kinetic energy discrimination
-
表 1 干扰元素的实验结果
Table 1. Results of interference elements
干扰元素 标准溶液浓度
(mg/L)测定元素 质量数 干扰系数 Sn 50 Cd 114 0.023 50 In 115 0.012 Zr 50 Mo 96 0.081 50 Ag 107 0.001 50 Ag 109 0.0001 50 Cd 111 0.0001 Nb 50 Ag 109 0.0020 Cd 1 In 113 1.083 表 2 STD和KED模式测定结果的对比
Table 2. Comparison of the analytical results of Ag and Cd in STD and KED modes
标准物质编号 Ag Cd 认定值
(mg/kg)STD
测定值
(mg/kg)相对误差
(%)KED
测定值
(mg/kg)相对误差
(%)认定值
(mg/kg)STD
测定值
(mg/kg)相对误差
(%)KED
测定值
(mg/kg)相对误差
(%)GBW07103 0.033 0.15 355 0.034 3.0 0.029 0.07 141 0.037 27.6 GBW07408 0.06 0.19 217 0.07 16.7 0.13 0.18 38 0.15 15.4 GBW07358 0.14 0.23 64 0.14 0 0.34 0.33 -3.0 039 14.7 表 3 方法检出限
Table 3. Detection limit of the method
元素 方法检出限
(mg/kg)Co 0.006 Ni 0.12 Cu 0.14 Zn 0.6 Mo 0.023 Ag 0.004 Cd 0.005 In 0.002 Sb 0.017 Cs 0.006 Ta 0.005 W 0.02 Pb 0.27 Bi 0.024 表 4 方法精密度和准确度
Table 4. Precision and accuracy tests of the method
元素 GBW07103(岩石) GBW07104(岩石) GBW07402(土壤) GBW07408(土壤) GBW07358(水系沉积物) GBW07366(水系沉积物) 认定值
(mg/kg)测定平均值
(mg/kg)RSD
(%)相对误差
(%)认定值
(mg/kg)测定平均值
(mg/kg)RSD
(%)相对误差
(%)认定值
(mg/kg)测定平均值
(mg/kg)RSD
(%)相对误差
(%)认定值
(mg/kg)测定平均值
(mg/kg)RSD
(%)相对误差
(%)认定值
(mg/kg)测定平均值
(mg/kg)RSD
(%)相对误差
(%)认定值
(mg/kg)测定平均值
(mg/kg)RSD
(%)相对误差
(%)Co 3.4 3 3.4 -13.0 13.2 13.2 3.3 -0.1 8.7 8.0 3.8 -7.5 12.7 12.4 2.7 -2.3 10.2 9.5 5.2 -6.5 14.4 14.2 4.5 -1.7 Ni 2.3 1.9 10.3 -16 17 16.8 3.7 -1.4 19.4 18.8 3.7 -3.2 31.5 31.1 2.4 -1.4 18.6 18.1 11 -2.9 29 29 8 -1.0 Cu 3.2 2.6 3.8 -20 55 56.3 5.5 2.4 16.3 15.3 3.6 -6.3 24.3 23.4 2.0 -3.8 132 126 5.3 -4.4 483 487 4.1 0.7 Zn 28 28 5.2 -0.03 71 72.6 2.9 2.3 42 41 3.6 -1.7 68 68 1.9 -0.6 208 205 5.5 -1.3 874 875 4.2 0.1 Mo 3.5 3.6 5.1 2.5 0.54 0.62 6.5 14.0 0.98 0.98 4.9 -0.01 1.16 1.18 2.4 2.1 0.93 0.86 7.2 -7.0 1.56 1.49 6.2 -4.4 Ag 0.033 0.028 15.0 -15.0 0.071 0.076 6.9 7.0 0.054 0.054 7.6 0.9 0.06 0.063 7.2 5.3 0.14 0.14 6.2 -2.6 2.1 2.05 5.8 -2.2 Cd 0.029 0.033 18.0 14.0 0.061 0.072 7.8 18.0 0.071 0.077 5.3 7.9 0.13 0.14 7.7 6.9 0.34 0.32 7.3 -5.4 4.8 4.53 4.2 -5.7 In 0.02 0.019 13.0 -5.0 0.037 0.031 9.0 -16.0 0.09 0.092 5.9 2.1 0.044 0.052 7.8 18.0 0.14 0.14 6.1 0.9 0.37 0.37 6.0 0 Sb 0.21 0.23 9.5 8.3 0.12 0.1 14.6 0.3 1.3 1.3 5.9 2.3 1 1.2 4.3 20.0 1.18 1.17 6.4 -0.8 25 23.0 4.1 -9.0 Cs 38.4 40.1 3.7 4.4 2.3 1.9 3.2 -16.0 4.9 4.7 4.0 -3.6 7.5 7.7 2.3 3.3 5.8 5.6 4.9 -3.6 10.3 10.3 4.1 0 Ta 7.2 9.2 4.5 28.0 0.4 0.48 11.8 21.0 0.78 0.68 11.0 -13.0 1.05 1.14 8.7 8.2 0.65 0.58 17.0 -10.0 1.23 1.17 9.2 -4.8 W 8.4 9.3 3.7 11.0 0.45 0.53 8.6 17.0 1.08 1.15 11.0 6.3 1.7 1.8 2.9 7.9 2 1.9 5.6 -4.8 15.5 13.7 6.3 -11.9 Pb 31 33 3.6 5.1 11.3 10.2 3.5 -10.0 20 19 3.7 -3.3 21 19 2.3 -9.0 210 203 5.0 -3.3 127 128 4.0 0.4 Bi 0.53 0.54 5.9 1.4 0.081 0.1 10.2 -15.0 0.38 0.37 3.5 -3.8 0.3 0.3 2.7 -0.3 0.51 0.49 5.9 -3.8 13.1 13.0 4.3 -0.6 -
[1] 王建其, 柳小明.X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J].岩矿测试, 2016, 35(2):145-151. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.02.006
Wang J Q, Liu X M.Proficiency testing of the XRF method for measuring 10 major elements in different rock types[J].Rock and Mineral Analysis, 2016, 35(2):145-151. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.02.006
[2] 李小莉, 安树清, 徐铁民, 等.超细粉末压片制样X射线荧光光谱测定碳酸岩样品中多种元素及CO2[J].光谱学与光谱分析, 2015, 35(6):1741-1745. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201506061
Li X L, An S Q, Xu T M, et al.Ultra-fine pressed powder pellet sample preparation XRF determination of multi-elements and carbon dixide in carbonate[J].Spectroscopy and Spectral Analysis, 2015, 35(6):1741-1745. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201506061
[3] 戴尽璇, 黄赛杰, 徐立高.微波消解-原子吸收分光光度法测定海洋沉积物中的铜、锌、铅、镉、铬[J].化工时刊, 2017, 31(9):20-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgsk201709008
Dai J X, Huang S J, Xu L G.Determination of copper, zinc, chrome, chromium and cadmium in marine sediment by graphite furnace atomic absorption spectrophotometry with microwave digestion[J].Chemical Industry Times, 2017, 31(9):20-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgsk201709008
[4] 卢兵, 杜少文, 盛红宇, 等.AAS、ICP-AES、ICP-MS及XRF测定地质样品中铜铅锌锰的对比研究[J].黄金, 2014, 35(9):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201409027
Lu B, Du S W, Sheng H Y, et al.Contrast research on determination of Cu, Pb, Zn, Mn by AAS, ICP-AES, ICP-MS and XRF in geological samples[J].Gold, 2014, 35(9):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201409027
[5] Lashari A A, Kazi T G, Ali J, et al.Evaluation of sequen-tial extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar Coalfield, Pakistan[J].Atomic Spectroscopy, 2018, 39(5):203-209.
[6] 何恬叶, 张颖红, 胡子文.微波消解ICP-OES法测定土壤样品中22种元素[J].分析试验室, 2018, 37(1):84-87. http://www.cqvip.com/QK/92500X/201801/674335783.html
He T Y, Zhang Y H, Hu Z W.Determination of 22 elements in soil by ICP-OES with microwave digestion[J].Chinese Journal of Analysis Laboratory, 2018, 37(1):84-87. http://www.cqvip.com/QK/92500X/201801/674335783.html
[7] 齐铁铭, 金丽.电感耦合等离子体发射光谱(ICP-OES)法测定城市污泥中的磷、钾、铬、铜、铅、锌、镍[J].湖南有色金属, 2017, 33(4):68-72.
Qi T M, Jin L.Inductively coupled plasma optical emission spectrometry (ICP-OES) for the determination of P, K, Cr and other elements in sludge[J].Hunan Nonferrous Metals, 2017, 33(4):68-72.
[8] Khorge C R, Patwardhan A A.Separation and determina-tion of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J].Atomic Spectroscopy, 2018, 39(2):75-80.
[9] Barros J A V A, Alex V, Schiavo D, et al.Determination of ultra-trace levels of Mo in plants by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS)[J].Microchemical Journal, 2017, 133:567-571. https://www.researchgate.net/publication/316480707_Determination_of_ultra-trace_levels_of_Mo_in_plants_by_inductively_coupled_plasma_tandem_mass_spectrometry_ICP-MSMS
[10] Yang B, Duan F M, Ding J L, et al.Determination of heavy metals in tobacco by ICP-MS and analysis of uncertainty[J].Asian Agricultural Research, 2016, 8(10):51-54.
[11] 赵志南, 严冬, 何群华, 等.ICP-MS测定《全国土壤污染状况详查》项目中14种元素[J].环境化学, 2017, 36(2):448-452. http://www.cqvip.com/QK/95665X/20173/671631772.html
Zhao Z N, Yan D, He Q H, et al.Determination of 14 elements in China Soil Pollution Survey by ICP-MS[J].Environmental Chemistry, 2017, 36(2):448-452. http://www.cqvip.com/QK/95665X/20173/671631772.html
[12] Ahmed M, Chin Y H, Guo X X, et al.Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem[J].Journal of Environmental Sciences, 2017, 55:1-10.
[13] Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1):1-15.
[14] Chen S Z, Zhu S P, Lu D B.Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J].Atomic Spectroscopy, 2018, 39(2):55-61.
[15] 王佳翰, 冯俊, 王达成, 等.电感耦合等离子体质谱法测定地球化学样品中钼镉钨铀锡[J].冶金分析, 2017, 37(6):20-25. http://www.cqvip.com/QK/90283X/201706/672407205.html
Wang J H, Feng J, Wang D C, et al.Determination of molybdenum, cadmium, tungsten, uranium and tin in geochemical samples by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2017, 37(6):20-25. http://www.cqvip.com/QK/90283X/201706/672407205.html
[16] 靳兰兰, 王秀季, 李会来, 等.电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J].冶金分析, 2016, 36(7):1-14.
Jin L L, Wang X J, Li H L, et al.Orogress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J].Metallurgical Analysis, 2016, 36(7):1-14.
[17] 马晓凤, 陆源.碰撞/反应池ICP-MS法研究葛根茶中元素[J].广州化工, 2016, 44(15):126-128. http://www.cqvip.com/QK/93773X/201615/669698045.html
Ma X F, Lu Y.Study on collision/reaction cell inductively coupled plasma mass spectrometry for analysis of Pueraria Lobata root tea[J].Guangzhou Chemical Industry, 2016, 44(15):126-128. http://www.cqvip.com/QK/93773X/201615/669698045.html
[18] 乔军, 佟克兴, 李安.电感耦合等离子体质谱(ICP-MS)法测定葡萄酒中的铜、镉、铅[J].中国无机分析化学, 2017, 7(4):33-36.
Qiao J, Tong K X, Li A.Determination of copper, cadmium, lead in wine by inductively coupled plasma mass spectrometry (ICP-MS)[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4):33-36.
[19] 宋阳, 李现忠, 黄文氢, 等.ICP-MS技术在石油化工中的应用[J].石油化工, 2016, 45(10):1279-1287.
Song Y, Li X Z, Huang W Q, et al.Application of ICP-MS in petrochemical industry[J].Petrochemical Technology, 2016, 45(10):1279-1287.
[20] 王静, 王鑫, 耿哲, 等.碰撞池-电感耦合等离子体质谱测定海水重金属[J].环境工程学报, 2016, 10(4):2139-2143. http://d.wanfangdata.com.cn/Periodical/hjwrzljsysb201604088
Wang J, Wang X, Geng Z, et al.Determination of heavy metal in marine waters by collision cell inductively coupled plasma mass spectrometry[J].Chinese Journal of Environmental Engineering, 2016, 10(4):2139-2143. http://d.wanfangdata.com.cn/Periodical/hjwrzljsysb201604088
[21] 刘金巍, 刘雪松, 边超, 等.甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒[J].岩矿测试, 2019, 38(1):85-91. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804200049
Liu J W, Liu X S, Bian C, et al.Determination of trace selenium in groundwater by DRC-ICP-MS[J].Rock and Mineral Analysis, 2019, 38(1):85-91. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804200049
[22] 蒋慧, 雷宁生, 黎林, 等.KED-ICP-MS测定天然饮用泉水中的18种元素含量[J].食品研究与开发, 2016, 37(16):151-154. http://www.cqvip.com/QK/90648X/201616/670459497.html
Jiang H, Lei N S, Li L, et al.Determination of 18 elements in drinking spring water by inductively coupled plasma-mass spectrometry with collision cell technology[J].Food Research and Development, 2016, 37(16):151-154. http://www.cqvip.com/QK/90648X/201616/670459497.html
[23] 辛晓东, 胡芳, 孙莉, 等.基于碰撞池技术的电感耦合等离子体质谱法同时测定水中10种金属元素[J].化学分析计量, 2015, 24(6):35-38. http://www.cqvip.com/QK/97788A/201506/666710949.html
Xin X D, Hu F, Sun L, et al.Determination of 10 kinds of metal elements in water by inductively coupled plasma-mass spectrometry based on kinetic energy discrimination[J].Chemical Analysis and Meterage, 2015, 24(6):35-38. http://www.cqvip.com/QK/97788A/201506/666710949.html
[24] 贾双珠, 李长安, 解田, 等.ICP-MS分析应用进展[J].分析试验室, 2016, 35(6):731-735.
Jia S Z, Li C A, Xie T, et al.Application of inductively coupled plasma mass spectrometry in material analysis[J].Chinese Journal of Analysis Laboratory, 2016, 35(6):731-735.
[25] 郭冬发, 李金英, 李伯平, 等.电感耦合等离子体质谱分析方法的重要进展(2015-2016)[J].质谱学报, 2017, 38(5):599-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zpxb201705012
Guo D F, Li J Y, Li B P, et al.Major advances in inductively coupled plasma mass spectrometry (2015-2016)[J].Journal of Chinese Mass Spectrometry, 2017, 38(5):599-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zpxb201705012
[26] 赵志南, 陈观宇, 杨仁康.土壤样品快速消解与ICP-MS测定条件的优化[J].环境化学, 2017, 36(6):1428-1431.
Zhao Z N, Chen G Y, Yang R K.The optimization of soil digestion and ICP-MS testing conditions[J].Environmental Chemistry, 2017, 36(6):1428-1431.
[27] 韩建华, 孙传强, 汪曣, 等.电感耦合等离子体质谱中碰撞反应池的模拟探讨[J].冶金分析, 2014, 34(9):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201409001
Han J H, Sun C Q, Wang Y, et al.Discussion on the simulation of collision reaction cell in inductively coupled plasma-mass spectrometry[J].Metallurgical Analysis, 2014, 34(9):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201409001
[28] 李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007
Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J].Rock and Mineral Analysis, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007
[29] 王岚, 杨丽芳, 谭西早, 等.膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J].岩矿测试, 2017, 36(6):574-580. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703130032
Wang L, Yang L F, Tan X Z, et al.Determination of Cd in environmental geological samples by inductively coupled plasma-mass spectrometry with membrane desolvation[J].Rock and Mineral Analysis, 2017, 36(6):574-580. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703130032
[30] 成学海, 夏传波, 郑建业, 等.封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J].岩矿测试, 2017, 36(3):231-238. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609220143
Cheng X H, Xia C B, Zheng J Y, et al.Simultaneous determination of 29 trace elements in tourmaline by inductively coupled plasma mass spectrometry with sealed press acid decposition[J].Rock and Mineral Analysis, 2017, 36(3):231-238. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609220143
[31] 林伟龙, 王正海, 王娟, 等.电感耦合等离子体质谱测定灌木枝叶中微量元素的样品预处理方法研究[J].岩矿测试, 2015, 34(4):430-435. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.009
Lin W L, Wang Z H, Wang J, et al.Sample pretreatment methods for determination of trace elements in plant by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(4):430-435. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.009
[32] 鲁照玲, 胡红云, 姚洪.土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J].岩矿测试, 2012, 31(2):241-246. http://www.ykcs.ac.cn/article/id/ykcs_20120208
Lu Z L, Hu H Y, Yao H.Study on quantitative analysis method for several heavy metals in soil samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):241-246. http://www.ykcs.ac.cn/article/id/ykcs_20120208
[33] 王云凤, 王江鱼.四种酸体系溶样法对电感耦合等离子体质谱法测定水系沉积物中16种金属元素的影响[J].冶金分析, 2016, 36(7):63-68. http://www.cqvip.com/QK/90283X/201607/669696199.html
Wang Y F, Wang J Y.Influence of four sample solution method with acid system on determination of sixteen elements in stream sediment by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(7):63-68. http://www.cqvip.com/QK/90283X/201607/669696199.html
[34] 何海洋, 董学林, 于晓琪, 等.内标校正-电感耦合等离子体发射光谱法测定磷矿石中的磷[J].岩矿测试, 2017, 36(2):117-123. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.004
He H Y, Dong X L, Yu X Q, et al.Determination of phosphorus in phosphate ore by inductively coupled plasma optical emission spectrometry utilizing an internal standard correction method[J].Rock and Mineral Analysis, 2017, 36(2):117-123. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.004
[35] 程志中, 谢学锦.中国西南地区76种元素地球化学填图[J].物探化探计算技术, 2007, 29(增刊):174-179. http://www.cqvip.com/Main/Detail.aspx?id=1000093542
Cheng Z Z, Xie X J.Geochemical mapping for 76 elements in Southwest China[J].Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(Supplement):174-179. http://www.cqvip.com/Main/Detail.aspx?id=1000093542