中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用

高梓涵, 李立武, 王玉慧, 曹春辉, 贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用[J]. 岩矿测试, 2019, 38(5): 469-478. doi: 10.15898/j.cnki.11-2131/td.201812190138
引用本文: 高梓涵, 李立武, 王玉慧, 曹春辉, 贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用[J]. 岩矿测试, 2019, 38(5): 469-478. doi: 10.15898/j.cnki.11-2131/td.201812190138
Zi-han GAO, Li-wu LI, Yu-hui WANG, Chun-hui CAO, Jian HE. Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing[J]. Rock and Mineral Analysis, 2019, 38(5): 469-478. doi: 10.15898/j.cnki.11-2131/td.201812190138
Citation: Zi-han GAO, Li-wu LI, Yu-hui WANG, Chun-hui CAO, Jian HE. Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing[J]. Rock and Mineral Analysis, 2019, 38(5): 469-478. doi: 10.15898/j.cnki.11-2131/td.201812190138

双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用

  • 基金项目:
    国家自然科学基金资助项目(41473062)
详细信息
    作者简介: 高梓涵, 硕士研究生, 地质工程专业。E-mail:2810652521@qq.com
    通讯作者: 李立武, 博士, 研究员, 主要从事气体地球化学实验与研究工作。E-mail:llwu@lzb.ac.cn
  • 中图分类号: O628.11

Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing

More Information
  • 分析岩石矿物中的气体化学组成,可为岩石圈地幔的不同地球化学过程、地球内部氧化还原环境以及水在深部地球中的循环等研究提供重要的信息与约束条件。对岩矿样品加热使气体脱出是一种常用的实验手段,使用单石英玻璃管作为样品管,石英玻璃结构中不规则的空隙使得气体在高温下易发生扩散与渗透;由钼、钽坩埚组成的双真空炉管一般用于稀有气体同位素组成分析,较少用于气体化学组成分析,且该装置结构复杂,不易组装拆解,也易被损坏。针对以上问题,本文研制了石英玻璃与金属零件组成的双真空盛样炉管,该炉管具有体积小、易于组装、拆解和移动等特点。在相同的实验条件下与单石英玻璃管进行对照实验。根据实验结果,尤其是H2浓度的测量结果表明:不论哪种类型的样品在500℃和950℃加热脱气时,应用本文研制的双真空盛样炉管,测量的H2浓度均高于同等实验条件下应用单石英玻璃管测量的H2浓度,该双真空炉管的气密性优于单石英玻璃管,有利于获得样品中更加真实的气体化学组成。
  • 加载中
  • 图 1  加热装置示意图

    Figure 1. 

    图 2  岩石脱气装置管线示意图

    Figure 2. 

    图 3  氢气百分含量对比

    Figure 3. 

    表 1  各样品脱出气体的组分含量百分比

    Table 1.  Percentage of component content for gases released from each sample

    样品编号 加热温度(石英管类型) 样品质量
    (g)
    气体含量百分比(%)
    H2 O2+Ar N2 CH4 CO CO2
    MAS-KC-2 500℃(单石英管) 0.3817 2.944 0.233 0.336 0.692 6.211 88.657
    950℃(单石英管) 0.3817 0.044 0.295 2.748 0.054 0.382 94.875
    500℃(双真空炉管) 0.3813 4.487 0.086 0.214 5.439 5.210 82.006
    950℃(双真空炉管) 0.3813 0.982 0.142 1.619 0.837 2.240 93.891
    HXZ-2 500℃(单石英管) 0.6384 2.035 0.448 1.040 21.009 5.016 68.313
    950℃(单石英管) 0.6384 0.034 0.004 0.274 0.049 0.389 99.121
    500℃(双真空炉管) 0.6369 7.351 0.186 0.420 10.186 1.873 75.907
    950℃(双真空炉管) 0.6369 0.403 0.029 0.367 0.196 1.244 97.641
    FDX-NT-1 500℃(单石英管) 0.5313 7.813 0.425 1.588 5.860 4.184 72.103
    950℃(单石英管) 0.5313 0.860 0.004 0.044 0.078 14.796 84.096
    500℃(双真空炉管) 0.5300 20.33 0.479 1.119 19.962 4.363 48.435
    950℃(双真空炉管) 0.5300 1.465 0.014 0.034 0.623 14.542 83.126
    MAS-ZC-1 500℃(单石英管) 0.2402 1.770 0.008 0.022 3.126 15.028 76.591
    950℃(单石英管) 0.2402 0.754 0.116 0.452 0.200 0.982 96.897
    500℃(双真空炉管) 0.2391 2.428 0.026 0.057 4.316 10.795 82.027
    950℃(双真空炉管) 0.2391 1.292 0.148 0.637 0.587 1.219 94.911
    黑钨矿 500℃(单石英管) 0.9403 5.016 0.032 0.265 0.785 9.341 84.328
    950℃(单石英管) 0.9403 0.991 0.282 2.587 0.077 4.747 89.863
    500℃(双真空炉管) 0.9398 6.391 0.070 0.439 3.242 1.454 74.501
    950℃(双真空炉管) 0.9398 3.203 0.126 1.426 5.545 22.298 65.621
    下载: 导出CSV

    表 2  各样品在不同温度点释出的气体量

    Table 2.  Amount of gas released from each sample at different temperature

    加热脱气炉管及温度 气体量(μL)
    MAS-KC-2 HXZ-2 FDX-NT-1 MAS-ZC-1 黑钨矿
    500℃(单石英管) 330.34 34.14 16.03 532.76 260.34
    950℃(单石英管) 29.31 541.38 582.76 86.21 34.48
    500℃(双真空炉管) 268.97 208.97 66.20 379.31 270.67
    950℃(双真空炉管) 127.59 406.90 637.93 60.69 98.97
    下载: 导出CSV

    表 3  重复性测试以及钼管试验结果

    Table 3.  Repeatability test and Mo-tube test results

    样品 加热温度
    (℃)
    样品质量
    (g)
    气体含量百分比(%)
    H2 O2 +Ar N2 CH4 CO CO2
    FRS
    (11月21日)
    500 0.3352 25.252 0.346 2.351 24.638 9.076 36.767
    950 0.3352 25.830 0.143 2.931 9.049 46.980 14.790
    FRS重复
    (11月25日)
    500 0.3357 27.832 0.333 2.433 22.901 7.848 33.761
    950 0.3357 25.503 0.142 2.966 12.586 41.506 16.573
    FRS钼管
    (不开V1)
    500 0.3277 4.603 0.236 1.120 12.881 21.280 57.422
    950 0.3277 14.077 0.361 2.467 10.026 22.534 43.388
    FRS钼管
    (开V1,关V4)
    500 0.3374 7.098 0.229 1.515 15.918 15.943 53.892
    950 0.3374 10.939 0.264 7.122 9.996 41.897 23.739
    下载: 导出CSV
  • [1]

    倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

    Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

    [2]

    Lowell R M, Nikita M, Maximb P, et al.Volatile contents of primitive bubble-bearing melt inclusions from Klyuchevskoy volcano, Kamchatka:Comparison of volatile contents determined by mass-balance versus experimental homogenization[J].Journal of Volcanology and Geothermal Research, 2018, 358:124-131. doi: 10.1016/j.jvolgeores.2018.03.007

    [3]

    Metrich N, Wallace P J.Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J].Reviews in Mineralogy and Geochemistry, 2008, 69(1):363-402. doi: 10.2138/rmg.2008.69.10

    [4]

    汤庆艳, 李建平, 张铭杰, 等.东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件[J].岩石学报, 2017, 33(1):104-114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701009

    Tang Q Y, Li J P, Zhang M J, et al.The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, Western China:Constraints from chemical and carbon isotopic compositions of volatiles[J].Acta Petrologica Sinica, 2017, 33(1):104-114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701009

    [5]

    米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203014

    Mi J K, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos Basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203014

    [6]

    Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007

    [7]

    何佳乐, 潘忠习, 冉敬.激光拉曼光谱法在单个流体包裹体研究中的应用进展[J].岩矿测试, 2015, 34(4):383-391. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.002

    He J L, Pan Z X, Ran J.Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J].Rock and Mineral Analysis, 2015, 34(4):383-391. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.002

    [8]

    周姣花, 徐金沙, 牛睿, 等.利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J].岩矿测试, 2018, 37(2):130-138. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201605050114

    Zhou J H, Xu J S, Niu R, et al.Application of SEM and EDS to analyze the occurrence of platinum group elements and characteristics of platinum group minerals in the Pt-Pd deposit from Huili, Sichuan Province, China[J].Rock and Mineral Analysis, 2018, 37(2):130-138. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201605050114

    [9]

    张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201606002

    Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos Basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201606002

    [10]

    杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05

    Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05

    [11]

    李立武, 刘艳, 王先彬, 等.高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J].岩矿测试, 2017, 36(3):222-230. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609080137

    Li L W, Liu Y, Wang X B, et al.Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J].Rock and Mineral Analysis, 2017, 36(3):222-230. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609080137

    [12]

    Mironova F.Volatile components of natural fluids:Evi-dence from inclusions in minerals:Methods and results[J].Geochemistry International, 2010, 48(1):83-90.

    [13]

    杨丹, 徐文艺, 崔艳合, 等.二维气相色谱法测定流体包裹体中气相成分[J].岩矿测试, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005 http://www.ykcs.ac.cn/article/id/ykcs_200706160

    Yang D, Xu W Y, Cui Y H, et al.Determination of gaseous components in fluid inclusion samples by two-dimensional gas chromatography[J].Rock and Mineral Analysis, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005 http://www.ykcs.ac.cn/article/id/ykcs_200706160

    [14]

    朱和平, 王莉娟.四极质谱测定流体包裹体中的气相成分[J].中国科学(D辑), 2001, 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008

    Zhu H P, Wang L J.Quadrupole mass spectrometry for the determination of gas composition in fluid inclusions[J].Science in China(Series D), 2001, 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008

    [15]

    Azmy K, Blamey N J F.Source of diagenetic fluids from fluid-inclusion gas ratios[J].Chemical Geology, 2013, 347(6):246-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1812c1d91ac5c21bead322a20bbfba25

    [16]

    Blamey N J F.Composition and evolution of crustal, geo-thermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis[J].Journal of Geochemical Exploration, 2012, 116-117:17-27. doi: 10.1016/j.gexplo.2012.03.001

    [17]

    Bekaert D V, Avice G, Marty B, et al.Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon[J].Geochimica et Cosmochimica Acta, 2017, 218:114-131. doi: 10.1016/j.gca.2017.08.041

    [18]

    Zhang M J, Tang Q Y, Hu P Q, et al.Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China[J].Chemical Geology, 2013, 339:301-312. doi: 10.1016/j.chemgeo.2012.07.023

    [19]

    孙明良, 叶先仁.固体样品中He、Ar同位素的质谱测定[J].沉积学报, 1997, 15(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005818

    Sun M L, Ye X R.Measurement on He and Ar isotopic compositions in solid samples by mass spectrometry[J].Acta Sedimentologica Sinica, 1997, 15(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005818

    [20]

    Tolstikhin I, Kamensky I, Tarakanov S, et al.Noble gas isotope sites and mobility in mafic rocks and olivine[J].Geochimica et Cosmochimica Acta, 2010, 74:1436-1447. doi: 10.1016/j.gca.2009.11.001

    [21]

    Broadley M W, Ballentine C J, Chavrit D, et al.Sedi-mentary halogens and noble gases within Western Antarctic xenoliths:Implications of extensive volatile recycling to the sub continental lithospheric mantle[J].Geochimica et Cosmochimica Acta, 2016, 176:139-156. doi: 10.1016/j.gca.2015.12.013

    [22]

    张铭杰, 王先彬, 李立武.对幔源岩中流体组分的不同测定方法评价[J].地质论评, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006

    Zhang M J, Wang X B, Li L W.An appraisal of different experimental methods in the determination of fluid composition in mantle-derived rocks[J].Geological Review, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006

    [23]

    李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44. http://d.old.wanfangdata.com.cn/Periodical/zpxb201501007

    Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44. http://d.old.wanfangdata.com.cn/Periodical/zpxb201501007

    [24]

    王广, 李立武.玄武岩热解氢同位素在线分析[J].岩矿测试, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003 http://www.ykcs.ac.cn/article/id/ykcs_200604104

    Wang G, Li L W.On-line analysis of hydrogen isotopes of basalt with stepped heating degas[J].Rock and Mineral Analysis, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003 http://www.ykcs.ac.cn/article/id/ykcs_200604104

    [25]

    王小东, 张铭杰, 伏珏蓉, 等.稀有气体同位素对岩浆侵入方向的制约:以夏日哈木镍铜硫化物矿床为例[J].岩石学报, 2018, 34(11):3433-3444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811022

    Wang X D, Zhang M J, Fu J R, et al.The magmatic intrusive direction constrains from noble gas isotopic compositions:A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun Orogenic Belt, China[J].Acta Petrologica Sinica, 2018, 34(11):3433-3444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811022

    [26]

    汤庆艳, 张铭杰, 余明, 等.晚二叠世峨眉山地幔柱岩浆成矿作用[J].岩石矿物学杂志, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010

    Tang Q Y, Zhang M J, Yu M, et al.The magmatic ore-forming system of Late-Permian Emeishan mantle plume[J].Acta Petrologica et Mineralogica, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010

    [27]

    Huang Y H, Tarantola A, Wang W J, et al.Charge history of CO2 in Lishui Sag, East China Sea Basin:Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J].Marine and Petroleum Geology, 2018, 98:50-65. doi: 10.1016/j.marpetgeo.2018.07.030

    [28]

    Caumona M C, Robert P, Laverret E, et al.Determination of methane content in NaCl-H2O fluid inclusions by Raman spectroscopy:Calibration and application to the external part of the Central Alps (Switzerland)[J].Chemical Geology, 2014, 378-379:52-61. doi: 10.1016/j.chemgeo.2014.03.016

    [29]

    Tristan A, Matthew J S, Brian G R, et al.In situ quan-titative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J].Chemical Geology, 2007, 237:255-263. doi: 10.1016/j.chemgeo.2006.06.025

    [30]

    顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012

    Gu C G.A study on the mechanism of thermal decomposition of carbonate minerals[J].Acta Mineralogica Sinica, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012

    [31]

    Severs M J, Azbej T, Thomas J B, et al.Experimental determination of H2O loss from melt inclusions during laboratory heating:Evidence from Raman spectroscopy[J].Chemical Geology, 2007, 237:358-371. doi: 10.1016/j.chemgeo.2006.07.008

    [32]

    Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:A FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1141
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2018-12-19
修回日期:  2019-05-14
录用日期:  2019-07-16

目录