Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing
-
摘要: 分析岩石矿物中的气体化学组成,可为岩石圈地幔的不同地球化学过程、地球内部氧化还原环境以及水在深部地球中的循环等研究提供重要的信息与约束条件。对岩矿样品加热使气体脱出是一种常用的实验手段,使用单石英玻璃管作为样品管,石英玻璃结构中不规则的空隙使得气体在高温下易发生扩散与渗透;由钼、钽坩埚组成的双真空炉管一般用于稀有气体同位素组成分析,较少用于气体化学组成分析,且该装置结构复杂,不易组装拆解,也易被损坏。针对以上问题,本文研制了石英玻璃与金属零件组成的双真空盛样炉管,该炉管具有体积小、易于组装、拆解和移动等特点。在相同的实验条件下与单石英玻璃管进行对照实验。根据实验结果,尤其是H2浓度的测量结果表明:不论哪种类型的样品在500℃和950℃加热脱气时,应用本文研制的双真空盛样炉管,测量的H2浓度均高于同等实验条件下应用单石英玻璃管测量的H2浓度,该双真空炉管的气密性优于单石英玻璃管,有利于获得样品中更加真实的气体化学组成。Abstract:
BACKGROUNDThe analysis of gas chemical composition in rock and mineral can provide important information and constraints for the study of different geochemical processes of lithospheric mantle, redox environment in the earth, and water circulation in the deep earth. Heating rock and ore samples to remove gas is a common experimental method. A single quartz glass tube is used as the sample tube. Irregular voids in quartz glass structure make gas easy to diffuse and permeate at high temperature. The double vacuum furnace tubes consisting of molybdenum and tantalum crucibles are generally used for the analysis of rare gas isotope composition, but seldom used for the analysis of gas chemical composition. The device has a complex structure, is not easy to assemble and disassemble, and is easily damaged. OBJECTIVESTo solve the problems contained in the sample-filling tube proposed in the background research. METHODSA double vacuum sampling furnace tube composed of quartz glass and metal parts had been developed. The furnace tube had the characteristics of small size, easy assembly, disassembly and movement. Under the same experimental conditions, the result was compared with that of a single quartz glass tube. RESULTSH2 concentration measured by the double vacuum sampling tube was higher than that measured by the single quartz glass tube under the same experimental conditions, no matter which type of sample was heated to degas at 500℃ or 950℃. CONCLUSIONSThe closure of the double vacuum furnace tube is better than that of the single quartz glass tube, which is conducive to obtain more real gas chemical composition in the sample. -
-
表 1 各样品脱出气体的组分含量百分比
Table 1. Percentage of component content for gases released from each sample
样品编号 加热温度(石英管类型) 样品质量
(g)气体含量百分比(%) H2 O2+Ar N2 CH4 CO CO2 MAS-KC-2 500℃(单石英管) 0.3817 2.944 0.233 0.336 0.692 6.211 88.657 950℃(单石英管) 0.3817 0.044 0.295 2.748 0.054 0.382 94.875 500℃(双真空炉管) 0.3813 4.487 0.086 0.214 5.439 5.210 82.006 950℃(双真空炉管) 0.3813 0.982 0.142 1.619 0.837 2.240 93.891 HXZ-2 500℃(单石英管) 0.6384 2.035 0.448 1.040 21.009 5.016 68.313 950℃(单石英管) 0.6384 0.034 0.004 0.274 0.049 0.389 99.121 500℃(双真空炉管) 0.6369 7.351 0.186 0.420 10.186 1.873 75.907 950℃(双真空炉管) 0.6369 0.403 0.029 0.367 0.196 1.244 97.641 FDX-NT-1 500℃(单石英管) 0.5313 7.813 0.425 1.588 5.860 4.184 72.103 950℃(单石英管) 0.5313 0.860 0.004 0.044 0.078 14.796 84.096 500℃(双真空炉管) 0.5300 20.33 0.479 1.119 19.962 4.363 48.435 950℃(双真空炉管) 0.5300 1.465 0.014 0.034 0.623 14.542 83.126 MAS-ZC-1 500℃(单石英管) 0.2402 1.770 0.008 0.022 3.126 15.028 76.591 950℃(单石英管) 0.2402 0.754 0.116 0.452 0.200 0.982 96.897 500℃(双真空炉管) 0.2391 2.428 0.026 0.057 4.316 10.795 82.027 950℃(双真空炉管) 0.2391 1.292 0.148 0.637 0.587 1.219 94.911 黑钨矿 500℃(单石英管) 0.9403 5.016 0.032 0.265 0.785 9.341 84.328 950℃(单石英管) 0.9403 0.991 0.282 2.587 0.077 4.747 89.863 500℃(双真空炉管) 0.9398 6.391 0.070 0.439 3.242 1.454 74.501 950℃(双真空炉管) 0.9398 3.203 0.126 1.426 5.545 22.298 65.621 表 2 各样品在不同温度点释出的气体量
Table 2. Amount of gas released from each sample at different temperature
加热脱气炉管及温度 气体量(μL) MAS-KC-2 HXZ-2 FDX-NT-1 MAS-ZC-1 黑钨矿 500℃(单石英管) 330.34 34.14 16.03 532.76 260.34 950℃(单石英管) 29.31 541.38 582.76 86.21 34.48 500℃(双真空炉管) 268.97 208.97 66.20 379.31 270.67 950℃(双真空炉管) 127.59 406.90 637.93 60.69 98.97 表 3 重复性测试以及钼管试验结果
Table 3. Repeatability test and Mo-tube test results
样品 加热温度
(℃)样品质量
(g)气体含量百分比(%) H2 O2 +Ar N2 CH4 CO CO2 FRS
(11月21日)500 0.3352 25.252 0.346 2.351 24.638 9.076 36.767 950 0.3352 25.830 0.143 2.931 9.049 46.980 14.790 FRS重复
(11月25日)500 0.3357 27.832 0.333 2.433 22.901 7.848 33.761 950 0.3357 25.503 0.142 2.966 12.586 41.506 16.573 FRS钼管
(不开V1)500 0.3277 4.603 0.236 1.120 12.881 21.280 57.422 950 0.3277 14.077 0.361 2.467 10.026 22.534 43.388 FRS钼管
(开V1,关V4)500 0.3374 7.098 0.229 1.515 15.918 15.943 53.892 950 0.3374 10.939 0.264 7.122 9.996 41.897 23.739 -
[1] 倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001
[2] Lowell R M, Nikita M, Maximb P, et al.Volatile contents of primitive bubble-bearing melt inclusions from Klyuchevskoy volcano, Kamchatka:Comparison of volatile contents determined by mass-balance versus experimental homogenization[J].Journal of Volcanology and Geothermal Research, 2018, 358:124-131. doi: 10.1016/j.jvolgeores.2018.03.007
[3] Metrich N, Wallace P J.Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J].Reviews in Mineralogy and Geochemistry, 2008, 69(1):363-402. doi: 10.2138/rmg.2008.69.10
[4] 汤庆艳, 李建平, 张铭杰, 等.东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件[J].岩石学报, 2017, 33(1):104-114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701009
Tang Q Y, Li J P, Zhang M J, et al.The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, Western China:Constraints from chemical and carbon isotopic compositions of volatiles[J].Acta Petrologica Sinica, 2017, 33(1):104-114. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201701009
[5] 米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203014
Mi J K, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos Basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203014
[6] Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007
[7] 何佳乐, 潘忠习, 冉敬.激光拉曼光谱法在单个流体包裹体研究中的应用进展[J].岩矿测试, 2015, 34(4):383-391. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.002
He J L, Pan Z X, Ran J.Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J].Rock and Mineral Analysis, 2015, 34(4):383-391. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.002
[8] 周姣花, 徐金沙, 牛睿, 等.利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J].岩矿测试, 2018, 37(2):130-138. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201605050114
Zhou J H, Xu J S, Niu R, et al.Application of SEM and EDS to analyze the occurrence of platinum group elements and characteristics of platinum group minerals in the Pt-Pd deposit from Huili, Sichuan Province, China[J].Rock and Mineral Analysis, 2018, 37(2):130-138. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201605050114
[9] 张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201606002
Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos Basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201606002
[10] 杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05
Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05
[11] 李立武, 刘艳, 王先彬, 等.高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J].岩矿测试, 2017, 36(3):222-230. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609080137
Li L W, Liu Y, Wang X B, et al.Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J].Rock and Mineral Analysis, 2017, 36(3):222-230. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201609080137
[12] Mironova F.Volatile components of natural fluids:Evi-dence from inclusions in minerals:Methods and results[J].Geochemistry International, 2010, 48(1):83-90.
[13] 杨丹, 徐文艺, 崔艳合, 等.二维气相色谱法测定流体包裹体中气相成分[J].岩矿测试, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005 http://www.ykcs.ac.cn/article/id/ykcs_200706160
Yang D, Xu W Y, Cui Y H, et al.Determination of gaseous components in fluid inclusion samples by two-dimensional gas chromatography[J].Rock and Mineral Analysis, 2007, 26(6):451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005 http://www.ykcs.ac.cn/article/id/ykcs_200706160
[14] 朱和平, 王莉娟.四极质谱测定流体包裹体中的气相成分[J].中国科学(D辑), 2001, 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008
Zhu H P, Wang L J.Quadrupole mass spectrometry for the determination of gas composition in fluid inclusions[J].Science in China(Series D), 2001, 31(7):586-590. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200107008
[15] Azmy K, Blamey N J F.Source of diagenetic fluids from fluid-inclusion gas ratios[J].Chemical Geology, 2013, 347(6):246-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1812c1d91ac5c21bead322a20bbfba25
[16] Blamey N J F.Composition and evolution of crustal, geo-thermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis[J].Journal of Geochemical Exploration, 2012, 116-117:17-27. doi: 10.1016/j.gexplo.2012.03.001
[17] Bekaert D V, Avice G, Marty B, et al.Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon[J].Geochimica et Cosmochimica Acta, 2017, 218:114-131. doi: 10.1016/j.gca.2017.08.041
[18] Zhang M J, Tang Q Y, Hu P Q, et al.Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China[J].Chemical Geology, 2013, 339:301-312. doi: 10.1016/j.chemgeo.2012.07.023
[19] 孙明良, 叶先仁.固体样品中He、Ar同位素的质谱测定[J].沉积学报, 1997, 15(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005818
Sun M L, Ye X R.Measurement on He and Ar isotopic compositions in solid samples by mass spectrometry[J].Acta Sedimentologica Sinica, 1997, 15(1):48-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005818
[20] Tolstikhin I, Kamensky I, Tarakanov S, et al.Noble gas isotope sites and mobility in mafic rocks and olivine[J].Geochimica et Cosmochimica Acta, 2010, 74:1436-1447. doi: 10.1016/j.gca.2009.11.001
[21] Broadley M W, Ballentine C J, Chavrit D, et al.Sedi-mentary halogens and noble gases within Western Antarctic xenoliths:Implications of extensive volatile recycling to the sub continental lithospheric mantle[J].Geochimica et Cosmochimica Acta, 2016, 176:139-156. doi: 10.1016/j.gca.2015.12.013
[22] 张铭杰, 王先彬, 李立武.对幔源岩中流体组分的不同测定方法评价[J].地质论评, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006
Zhang M J, Wang X B, Li L W.An appraisal of different experimental methods in the determination of fluid composition in mantle-derived rocks[J].Geological Review, 2000, 46(2):160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006
[23] 李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44. http://d.old.wanfangdata.com.cn/Periodical/zpxb201501007
Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44. http://d.old.wanfangdata.com.cn/Periodical/zpxb201501007
[24] 王广, 李立武.玄武岩热解氢同位素在线分析[J].岩矿测试, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003 http://www.ykcs.ac.cn/article/id/ykcs_200604104
Wang G, Li L W.On-line analysis of hydrogen isotopes of basalt with stepped heating degas[J].Rock and Mineral Analysis, 2006, 25(4):311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003 http://www.ykcs.ac.cn/article/id/ykcs_200604104
[25] 王小东, 张铭杰, 伏珏蓉, 等.稀有气体同位素对岩浆侵入方向的制约:以夏日哈木镍铜硫化物矿床为例[J].岩石学报, 2018, 34(11):3433-3444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811022
Wang X D, Zhang M J, Fu J R, et al.The magmatic intrusive direction constrains from noble gas isotopic compositions:A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun Orogenic Belt, China[J].Acta Petrologica Sinica, 2018, 34(11):3433-3444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201811022
[26] 汤庆艳, 张铭杰, 余明, 等.晚二叠世峨眉山地幔柱岩浆成矿作用[J].岩石矿物学杂志, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010
Tang Q Y, Zhang M J, Yu M, et al.The magmatic ore-forming system of Late-Permian Emeishan mantle plume[J].Acta Petrologica et Mineralogica, 2013, 32(5):680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010
[27] Huang Y H, Tarantola A, Wang W J, et al.Charge history of CO2 in Lishui Sag, East China Sea Basin:Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J].Marine and Petroleum Geology, 2018, 98:50-65. doi: 10.1016/j.marpetgeo.2018.07.030
[28] Caumona M C, Robert P, Laverret E, et al.Determination of methane content in NaCl-H2O fluid inclusions by Raman spectroscopy:Calibration and application to the external part of the Central Alps (Switzerland)[J].Chemical Geology, 2014, 378-379:52-61. doi: 10.1016/j.chemgeo.2014.03.016
[29] Tristan A, Matthew J S, Brian G R, et al.In situ quan-titative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J].Chemical Geology, 2007, 237:255-263. doi: 10.1016/j.chemgeo.2006.06.025
[30] 顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012
Gu C G.A study on the mechanism of thermal decomposition of carbonate minerals[J].Acta Mineralogica Sinica, 1990, 10(3):266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012
[31] Severs M J, Azbej T, Thomas J B, et al.Experimental determination of H2O loss from melt inclusions during laboratory heating:Evidence from Raman spectroscopy[J].Chemical Geology, 2007, 237:358-371. doi: 10.1016/j.chemgeo.2006.07.008
[32] Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:A FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011
-