中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究

戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008
引用本文: 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008
Ming-hui QI, Jun-jun LI, Qian CAO. The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008
Citation: Ming-hui QI, Jun-jun LI, Qian CAO. The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究

  • 基金项目:
    四川省科技厅科技支撑计划项目(2017GFW0175);省院省校合作项目(2018JZ0003)
详细信息
    作者简介: 戚明辉, 硕士, 工程师, 主要从事非常规油气储层评价研究。E-mail:158891057@qq.com
  • 中图分类号: P575.2;P588.22

The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision

  • 孔隙发育特征是泥页岩储集能力评价的关键参数之一。扫描电镜观察法已普遍用于描述泥页岩的孔隙发育特征,但是目前文献中对泥页岩微孔隙类型划分比较混乱,孔隙结构特征参数的表征以定性描述为主,缺乏定量表征手段。本文选取了18个泥页岩样品为研究对象,通过氩离子抛光和高分辨率扫描电子显微镜图像观察,基于孔隙发育形态、位置及成因,对样品中不同孔隙进行类型划分;结合JMicroVision图像分析软件,应用泥页岩微孔隙描述技术和孔隙尺度分类统计技术,统计不同类型孔隙发育数量、孔径大小、面孔率、形状系数、概率熵等参数,对其分布特征进行评价。研究表明,晶(粒)间孔隙和有机孔隙比较发育,其次为晶(粒)内孔和晶间隙。不同类型孔隙其孔径分布以纳米级为主,不同类型孔隙分布较无序,其概率熵主要分布在0.5~0.7之间,对应的形状系数分布差异也较大。有机质孔隙的形状系数主要分布在0.6~0.7范围内,形状分布以椭圆形或近似圆形为主,晶(粒)间孔隙和晶(粒)内孔隙的形状系数主要分布在0.3~0.7,分析晶(粒)间孔隙和晶(粒)内孔隙形状系数分布特征主要是受原始孔隙形态、压实作用和溶蚀作用的影响。研究认为,SEM与JMicroVision相结合是定量研究不同类型微孔发育特征的有效手段,为研究微孔的形成和演化奠定了基础。
  • 加载中
  • 图 1  泥页岩储层孔隙特征描述照片

    Figure 1. 

    图 2  不同类型孔隙发育比例分布频率

    Figure 2. 

    图 3  不同类型孔隙的(a)孔径、(b)概率熵、(c)形状系数分布频率

    Figure 3. 

    图 4  晶(粒)间孔隙发育数量与黏土矿物相对含量关系

    Figure 4. 

    图 5  有机质孔隙形状系数与有机质成熟度关系

    Figure 5. 

    表 1  泥页岩样品的基本特性

    Table 1.  Characteristics of the selected shale samples

    样品编号 TOC(%) Ro(%) 有机质类型 矿物含量(%)
    石英 长石 碳酸盐 黏土矿物 黄铁矿 其他
    1 3.576 1.21 Ⅱ1 20 15 6 44 8 7
    2 4.337 1.96 Ⅱ1 24 12 3 49 9 3
    3 2.045 1.16 Ⅱ1 25 24 13 31 4 3
    4 6.435 2.29 Ⅱ1 20 12 3 56 5 4
    5 5.892 1.21 Ⅱ1 21 17 3 48 3 8
    6 5.198 1.26 Ⅱ1 20 22 6 45 6 1
    7 2.740 1.38 Ⅱ1 51 0 4 37 6 2
    8 2.697 3.27 5 8 44 43 0 0
    9 0.784 1.10 30 10 20 40 0 0
    10 3.199 1.11 Ⅱ1 24 14 5 51 4 2
    11 2.541 1.18 Ⅱ1 24 30 2 38 2 4
    12 3.496 1.08 30 12 3 53 2 0
    13 6.531 1.16 Ⅱ1 26 25 0 45 2 2
    14 6.811 2.85 Ⅱ1 27 35 0 32 6 0
    15 6.009 3.11 23 25 5 41 6 0
    16 1.398 1.01 36 16 38 23 2 3
    17 1.096 0.99 27 18 7 39 5 4
    18 2.240 0.97 27 26 12 27 6 2
    下载: 导出CSV

    表 2  泥页岩储层孔隙分类

    Table 2.  Characteristics of pore classification of shale gas reservoir

    孔隙类型 成因机制 分布特征
    无机孔隙 原生孔隙 晶(粒)内孔(图 1-a, b) 矿物成岩作用过程中保留下来的微孔隙 常见于黏土矿物颗粒、石英、长石等晶体内,形状不规则
    无机孔隙 原生孔隙 晶(粒)间孔(图 1-c, d) 矿物颗粒沉积或再生长过程中保留下来微孔隙 常见于黏土矿物颗粒及黄铁矿等晶体间
    无机孔隙 原生孔隙 晶间隙(图 1-e) 矿物(尤其是黏土矿物)成岩转化过程中形成的间隙 发育于矿物晶体层间或颗粒边缘,多呈片状分布
    无机孔隙 次生孔隙 晶(粒)内溶孔(图 1-f),晶(粒)间溶孔(图 1-g) 不稳定矿物因发生溶蚀作用而形成 常见于黏土矿物、长石等晶体内(间),性状不规则
    有机质孔 有机质热成因孔 出油孔(图 1-h),出气孔(图 1-i),气孔群(图 1-j) 有机质不同演化阶段生烃、排烃过程中,油气聚积形成 出油孔、出气孔偶见于热演化程度较低的有机质中,气孔群常见于热演化程度较高的有机质中,呈分散的不规则分布
    有机质孔 收缩孔(缝)(图 1-k) 有机质热演化(失水)过程中收缩形成 有机质与矿物结合边缘或内部
    微裂缝 构造缝(图 1-l) 由局部构造作用所形成,主要与矿物的成岩作用、岩石脆性、地层压力以及构造活动(如断裂、褶皱等)相关 呈高角度裂缝切层发育
    下载: 导出CSV
  • [1]

    Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10):1621-1643. doi: 10.1306/04011312194

    [2]

    王香增, 张金川, 曹金舟, 等.陆相页岩气资源评价初探:以延长直罗-下寺湾区中生界长7段为例[J].地学前缘, 2012, 19(2):192-197. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202029

    Wang X Z, Zhang J C, Cao J Z, et al.A preliminary discussion on evaluation of continental shale gas resources:A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan of Yanchang[J].Earth Science Frontiers, 2012, 19(2):192-197. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202029

    [3]

    吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015, 42(2):167-176. http://d.old.wanfangdata.com.cn/Periodical/syktykf201502005

    Wu S T, Zhu R K, Cui J G, et al.Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2):167-176. http://d.old.wanfangdata.com.cn/Periodical/syktykf201502005

    [4]

    李晋宁.泥页岩储层孔隙结构表征和连通方式研究[D].南京: 南京大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10284-1017095378.htm

    Li J N.Study on Pore Structure Characteristics and Connectivity of Shale Reservoir[D].Nanjing: Nanjing University, 2017.

    [5]

    苑丹丹, 卢双舫, 陈方文, 等.渝东南地区彭页1井泥页岩微观孔隙结构特征[J].特种油气藏, 2016, 23(1):49-53. doi: 10.3969/j.issn.1006-6535.2016.01.011

    Yuan D D, Lu S F, Chen F W, et al.Shale microscopic pore structure characterization in Well Pengye1 of Southeast Chongqing[J].Special Oil and Gas Reservoir, 2016, 23(1):49-53. doi: 10.3969/j.issn.1006-6535.2016.01.011

    [6]

    杨峰, 宁正福, 胡昌篷, 等.页岩储层微观孔隙结构特征[J].石油学报, 2013, 34(2):301-311. http://d.old.wanfangdata.com.cn/Periodical/syxb201302012

    Yang F, Ning Z F, Hu C P, et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica, 2013, 34(2):301-311. http://d.old.wanfangdata.com.cn/Periodical/syxb201302012

    [7]

    王玉满, 董大忠, 杨桦, 等.川南下志留统龙马溪组页岩储集空间定量表征[J].中国科学(地球科学), 2014, 44(6):1348-1356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201406024

    Wang Y M, Dong D Z, Yang H, et al.Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, Southern Sichuan, China[J].Science China:Earth Sciences, 2014, 57:313-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201406024

    [8]

    王羽, 金婵, 汪丽华, 等.应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J].岩矿测试, 2015, 34(3):278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003

    Wang Y, Jin C, Wang L H, et al.Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J].Rock and Mineral Analysis, 2015, 34(3):278-285. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.003

    [9]

    俞雨溪, 罗晓容, 雷裕红, 等.陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J].天然气地球科学, 2016, 27(4):716-726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201604017

    Yu Y X, Luo X R, Lei Y H, et al.Characterization of lacustrine shale pore structure:An example from the Upper-Triassic Yanchang Formation, Ordos Basin[J].Naural Gas Geoscience, 2016, 27(4):716-726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201604017

    [10]

    张林晔, 李钜源, 李政, 等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J].地球科学进展, 2014, 29(6):700-711. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201406006

    Zhang L Y, Li J Y, Li Z, et al.Advance in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J].Advances in Earth Science, 2014, 29(6):700-711. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201406006

    [11]

    Keller L M, Schuetz P, Erni R, et al.Characterization of multi-scale microstructural features in Opalinus clay[J].Microporous and Mesoporous Materials, 2012, 170(4):84-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b9b4752a8941edb4865cd28e2196d40

    [12]

    张磊磊, 陆正元, 王军, 等.渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J].石油与天然气地质, 2016, 37(1):80-86. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201601011

    Zhang L L, Lu Z Y, Wang J, et al.Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J].Oil & Gas Geology, 2016, 37(1):80-86. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201601011

    [13]

    白名岗, 夏响华, 张聪, 等.场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J].岩矿测试, 2018, 37(3):225-234. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803260030

    Bai M G, Xia X H, Zhang C, et al.Study on shale organic porosity in the Longmaxi Formation, AnYe -1 Well using field emission-scanning electron microscopy and PerGeos system[J].Rock and Mineral Analysis, 2018, 37(3):225-234. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803260030

    [14]

    Jin L X, Mathur R, Rother G, et al.Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering[J].Chemical Geology, 2013, 256(2):50-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fca47e3231e521691e2604e2ca92965

    [15]

    Chen Q, Zhang J, Tang X, et al.Relationship between pore type and pore size of marine shale:An example from the Sinian-Cambrian Formation, Upper Yangtze region, South China[J].International Journal of Coal Geology, 2016, 158:13-28. doi: 10.1016/j.coal.2016.03.001

    [16]

    庞河清, 曾焱, 刘成川, 等.基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J].岩矿测试, 2017, 36(1):66-74. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.010

    Pang H Q, Zeng Y, Liu C C, et al.Investigation of pore structure of a argillaceous rocks reservoir in the 5th member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM[J].Rock and Mineral Analysis, 2017, 36(1):66-74. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.010

    [17]

    帅琴, 黄瑞成, 高强, 等.页岩气实验测试技术现状与研究进展[J].岩矿测试, 2012, 31(6):931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003 http://www.ykcs.ac.cn/article/id/ykcs_20120604

    Shuai Q, Huang R C, Gao Q, et al.Research development of analytical techniques for shale gas[J].Rock and Mineral Analysis, 2012, 31(6):931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003 http://www.ykcs.ac.cn/article/id/ykcs_20120604

    [18]

    焦堃.煤和泥页岩纳米孔隙的成因、演化机制与定量表征[D].南京: 南京大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10284-1015313113.htm

    Jiao K.The Characterization, Genesis and Evolution of Nanopores in Coals[D].Nanjing: Nanjing University, 2014.

    [19]

    蒋祺, 康志宏, 黄文辉, 等.富含有机质泥页岩孔隙结构与储集空间类型分析[J].辽宁工程技术大学学报(自然科学版), 2016, 35(9):908-913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201609003

    Jiang Q, Kang Z H, Huang W H, et al.Analysis of the organic-rich shale pore structure of reservoir space[J].Journal of Liaoning Technical University (Natural Science), 2016, 35(9):908-913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201609003

    [20]

    聂海宽, 张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质, 2011, 33(3):219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001

    Nie H K, Zhang J C.Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J].Petroleum Geology & Experiment, 2011, 33(3):219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001

    [21]

    Loucks R G, Reed R M, Ruppel S C, et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrockpores[J].AAPG Bulletin, 2012, 96(6):1071-1098. doi: 10.1306/08171111061

    [22]

    于炳松.页岩气储层孔隙分类与表征[J].地学前缘, 2013, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138

    Yu B S.Classification and characterization of gas shale pore system[J].Earth Science Frontiers, 2013, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138

    [23]

    曹茜, 周文, 陈文玲, 等.鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型、尺度及成因分析[J].矿物岩石, 2015, 35(2):90-97. http://d.old.wanfangdata.com.cn/Periodical/kwys201502011

    Cao Q, Zhou W, Chen W L, et al.Analysis of pore types, sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation, Odros Basin[J].Mineral Petrology, 2015, 35(2):90-97. http://d.old.wanfangdata.com.cn/Periodical/kwys201502011

    [24]

    Cao Q, Zhou W, Deng H, et al.Classification and controlling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results[J].Journal of Natural Gas Science and Engineering, 2015, 27:1381-1388. doi: 10.1016/j.jngse.2015.10.001

    [25]

    王香增, 范柏江, 张丽霞, 等.陆相页岩气的储集空间特征及赋存过程——以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J].石油与天然气地质, 2015, 36(4):651-658. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201504015

    Wang X Z, Fan B J, Zhang L X, et al.Reservoir space characteristics and charging process of Lacustrine shale gas-A case study of the Chang 7 member in Yanchang Block in Shanbei slope of Ordos Basin[J].Oil & Gas Geology, 2015, 36(4):651-658. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201504015

    [26]

    于炳松.页岩气储层孔隙分类与表征[J].地学前缘, 2013, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138

    Yu B S.Classification and characterization of gas shale pore system[J].Earth Science Frontiers, 2013, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138

    [27]

    张盼盼, 刘小平, 王雅杰, 等.页岩纳米孔隙研究新进展[J].地球科学进展, 2014, 29(11):1242-1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

    Zhang P P, Liu X P, Wang Y J, et al.Research progress in shale nanopores[J].Advances in Earth Science, 2014, 29(11):1242-1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

    [28]

    焦淑静, 张慧, 薛东川, 等.泥页岩孔隙类型、形态特征及成因研究[J].电子显微学报, 2015, 34(5):422-427. http://d.old.wanfangdata.com.cn/Periodical/dzxwxb201505012

    Jiao S J, Zhang H, Xue D C, et al.Study on morphological characteristics of micropores and microcracks in shale[J].Journal of Chinese Electron Microscopy Society, 2015, 34(5):422-427. http://d.old.wanfangdata.com.cn/Periodical/dzxwxb201505012

    [29]

    伍岳, 樊太亮, 蒋恕, 等.海相页岩储层微观孔隙体系表征技术及分类方案[J].地质科技情报, 2014, 33(4):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201404015

    Wu Y, Fan T L, Jiang S, et al.Characterizing techniques and classification methods for microscope pore system in marine shale reservoir[J].Geological Science and Technology Information, 2014, 33(4):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201404015

    [30]

    Clarkson C R, Solano N, Bustin R M, et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J].Fuel, 2013, 103:606-616. doi: 10.1016/j.fuel.2012.06.119

    [31]

    耳闯, 赵靖舟, 王芮, 等.鄂尔多斯盆地三叠系延长组页岩孔隙特征及发育机制[J].天然气地球科学, 2016, 27(7):1202-1214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201607007

    Er C, Zhao J Z, Wang R, et al.Characteristics and occurrence mechanism of organic-rich shale in the Triassic Yanchang Formation, Ordos Basin, China[J].Natural Gas Geoscience, 2016, 27(7):1202-1214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201607007

    [32]

    Pommer M, Milliken K.Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, Southern Texas[J].AAPG Bulletin, 2015, 99(9):1713-1744. doi: 10.1306/03051514151

    [33]

    姚军, 赵秀才.数字岩心及孔隙级渗流模拟理论[M].北京:石油工业出版社, 2010:125-128.

    Yao J, Zhao X C.Digital Core and Pore Level Percolation Simulation Theory[M].Beijing:Petroleum Industry Press, 2010:125-128.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1582
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2019-01-16
修回日期:  2019-03-18
录用日期:  2019-04-09

目录