Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier
-
摘要: 磁铁矿是一种绿色廉价的矿物材料,对水体中重金属离子具有良好的吸附性,但吸附容量低,选择性差,易团聚,通过改性可以克服该缺点并提高其吸附性能。本文以腐植酸为改性剂,采用常温水相反应制备了腐植酸改性磁铁矿吸附材料。通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)和X射线光电子能谱(XPS)表征研究其表面形貌和微观结构。采用静态平衡实验考察了pH、吸附时间等因素对铅、镉吸附性能的影响,探讨了吸附动力学规律,拟合了吸附等温线。结果表明:腐植酸上的羧基、羟基被成功地接枝到了磁铁矿表面。在室温下,溶液初始pH对Pb2+的吸附率几乎无影响,对Cd2+的影响较大,当pH=7时,Pb2+和Cd2+吸附率均达到了95%。对初始质量浓度为10mg/L的Pb2+、Cd2+最佳吸附平衡时间为360min,吸附过程符合准二级动力学方程。吸附等温线实验得到的竞争吸附顺序为Pb2+>Cd2+,由Langmuir等温吸附模型得到Pb2+、Cd2+饱和吸附容量分别为39.27mg/g、28.95mg/g,显著大于磁铁矿的饱和吸附容量,表明磁铁矿经腐植酸改性后增强了对水中铅镉的吸附能力。Abstract:
BACKGROUNDMagnetite is widely used as a green and cheap mineral material to adsorb heavy metals in water samples, but it has the disadvantages of low adsorption capacity, poor selectivity and easy reunion. Surface modification of magnetite could overcome these problems and improve its adsorption properties. OBJECTIVESTo enhance the adsorption properties of magnetite by using a humic acid modifier. METHODSThe morphology and structure of magnetite and humic acid-modified magnetite were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The effect of conditions such as optimal pH and adsorption time on Pb2+ and Cd2+ adsorption rate were investigated by static equilibrium experiment. RESULTSCarboxyl and hydroxyl groups in humic acid were successfully absorbed onto the surface of magnetite. At room temperature, the initial pH of the solution had little effect on the adsorption rate of Pb2+, but had a greater influence on Cd2+. When pH=7, the adsorption rates of Pb2+ and Cd2+ reached 95%. The optimal adsorption equilibrium time of Pb2+ and Cd2+ with initial mass concentration of 10mg/L was 360 minutes, and the adsorption process accords with the quasi-second-order kinetic equation. The order of competitive adsorption was Pb2+ followed by Cd2+. The Langmuir isothermal adsorption model yielded maximum adsorption capacity of Pb2+ and Cd2+ of 39.27mg/g and 28.95mg/g, respectively. CONCLUSIONSThe adsorption capacity of humic acid-modified magnetite was higher than that of magnetite, indicating that the ability of humic acid-modified magnetite was enhanced to adsorb Pb2+ and Cd2+ in water samples. -
-
表 1 Langmuir及Freundlich模型拟合参数
Table 1. Fitting parameters of the Langmuir and Freundlich models
元素 Langmuir模型 Freundlich模型 qmax
(mg/g)K(L/mg) R2 Kf
(mg/g)n R2 Pb2+ 39.27 0.454 0.972 28.41 12.85 0.791 Cd2+ 28.95 0.960 0.986 13.60 9.09 0.843 表 2 不同改性材料对Pb2+、Cd2+的吸附性能比较
Table 2. Comparison of adsorption properties of Pb2+, Cd2+ with various modified minerals
矿物材料 改性方法 pH Pb或Cd的吸附容量
(mg/g)参考文献 钒钛磁铁矿 pH 3,与腐植酸溶液振荡24h,70℃干燥24h 7 Pb2+ 14.41 [5] 针铁矿 腐植酸溶液与针铁矿1 : 1混匀,60℃烘干 - Cd2+ 45.46 [32] 蒙脱石 pH5,与腐植酸混合振荡20h,45℃风干 5 Cd2+ 11.87 [33] 累托石 与腐植酸混匀,再与氯化钙和硼砂混合,50℃干燥24h 6 Cd2+ 5.97 [34] 菱铁矿 小麦秸秆和菱铁矿500℃碳化60min 6~9 Cd2+ 19.42 [35] 腐植酸 磺化后进行接枝反应,形成不溶性腐植酸 7~9 Pb2+ 8.24 [24] 腐植酸 400℃加热1h,冷后2mol/L氯化钙中浸泡2h 6 Cd2+ 20.00 [36] 磁铁矿 水洗70℃烘干,室温粉碎至20~200目 6 Pb2+ 16.98 [31] 磁铁矿 0.5mol/L盐酸浸泡48h,150℃灼烧10min 7 Cd2+ 18.93 [29] 磁铁矿 与腐植酸溶液混合,pH 2~3,振荡72h,60℃干燥72h 7 Pb2+ 39.27, Cd2+ 28.95 本文 -
[1] Meneguin J G, Moisésb M P, Karchiyappan T, et al.Pre-paration and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions:Adsorption and thermodynamic modeling[J].Process Safety and Environmental Protection, 2017, 111:244-252. doi: 10.1016/j.psep.2017.07.005
[2] 刘金燕, 刘立华, 薛建荣, 等.重金属废水吸附处理的研究进展[J].环境化学, 2018, 37(9):2016-2024. http://d.old.wanfangdata.com.cn/Periodical/hghb201506008
Liu J Y, Liu L H, Xue J R, et al.Research progress on treatment of heavy metal wastewater by adsorption[J].Environmental Chemistry, 2018, 37(9):2016-2024. http://d.old.wanfangdata.com.cn/Periodical/hghb201506008
[3] Bhunia P, Chatterjee S, Rudra P, et al.Chelating poly-acrylonitrile beads for removal of lead and cadmium from wastewater[J].Separation and Purification Technology, 2018, 193(20):202-213. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d2bf5da09f4bcbfdb16de5d7a09b5cce
[4] Tabesh S, Davar F, Loghman-Estarki M R.Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions[J].Journal of Alloys and Compounds, 2018, 730(5):441-449.
[5] Lu M M, Zhang Y B, Zhou Y L, et al.Adsorption-desorption characteristics and mechanisms of Pb(Ⅱ) on natural vanadium, titanium-bearing magnetite-humic acid magnetic adsorbent[J].Powder Technology, 2019, 344(15):947-958. http://cn.bing.com/academic/profile?id=260f7bc66c7c0698fc670e04a240e792&encoded=0&v=paper_preview&mkt=zh-cn
[6] Karimpour M, Ashrafia S D, Taghavi K.Adsorption of cadmium and lead onto live and dead cell mass of pseudomonas aeruginosa:A dataset[J].Data in Brief, 2018, 18:1185-1192. doi: 10.1016/j.dib.2018.04.014
[7] 张连科, 王洋, 王维大, 等.磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能[J].环境科学学报, 2018, 38(11):4360-4370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201811017
Zhang L K, Wang Y, Wang W D, et al.Preparation of magnetic hydroxyapatite/biochar composite and its adsorption behavior of Pb2+ and recycling performance[J].Acta Scientiae Circumstantiae, 2018, 38(11):4360-4370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201811017
[8] 鲁安怀.矿物学环境属性研究新进展[J].岩石矿物学杂志, 2015, 34(6):795-802. doi: 10.3969/j.issn.1000-6524.2015.06.001
Lu A H.The new advance of mineralogical environmental attributes[J].Acta Petrologica et Mineralogica, 2015, 34(6):795-802. doi: 10.3969/j.issn.1000-6524.2015.06.001
[9] Chen L Y, Wu P X, Chen M Q, et al.Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead[J].Applied Clay Science, 2018, 159:74-82. doi: 10.1016/j.clay.2017.12.050
[10] 王喆, 谭科艳, 梁明会, 等.天然丝光沸石表面重构改性及其在水中去除重金属的应用[J].岩矿测试, 2018, 37(6):678-686. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802110018
Wang Z, Tan K Y, Liang M H, et al.Surface modification of natural mordenite and its application in removal of heavy metals from aqueous solution[J].Rock and Mineral Analysis, 2018, 37(6):678-686. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802110018
[11] Peng C, Chai L Y, Song Y X, et al.Thermodynamics, kinetics and mechanism analysis of Cu(Ⅱ) adsorption by in-situ synthesized struvite crystal[J].Journal of Central South University, 2018, 25(5):1033-1042. doi: 10.1007/s11771-018-3803-y
[12] 邵金秋, 温其谦, 阎秀兰, 等.天然含铁矿物对砷的吸附效果及机制[J].环境科学, 2019, DOI:10.13227/j.hjkx.201903023.
Shao J Q, Wen Q Q, Yan X L, et al.Comparison of adsorption and mechanism of arsenic by natural iron-containing minerals[J].Environmental Science, 2019, DOI:10.13227/j.hjkx.201903023.
[13] 崔晋艳, 钱天伟, 丁庆伟, 等.纳米级天然黄铁矿去除水中Cr6+, Cd2+和Pb2+[J].环境工程学报, 2016, 10(12):7103-7108. doi: 10.12030/j.cjee.201507166
Cui J Y, Qian T W, Ding Q W, et al.Adsorption of Cr6+, Cd2+ and Pb2+ from aqueous solutions by nanoscale pyrite[J].Chinese Journal of Environmental Engineering, 2016, 10(12):7103-7108. doi: 10.12030/j.cjee.201507166
[14] Ramirez-Muñiz K, Perez-Rodriguez F, Rangel-Mendez R.Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite[J].Journal of Molecular Liquids, 2018, 265(15):253-260. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cda589001e72938bfe03a087a1f94349
[15] 吴昆明, 郭华明, 魏朝俊.改性磁铁矿对水体中砷的吸附特性研究[J].岩矿测试, 2017, 36(6):624-632. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709110147
Wu K M, Guo H M, Wei C J.Adsorption characteristics of arsenic in water by modified magnetite[J].Rock and Mineral Analysis, 2017, 36(6):624-632. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201709110147
[16] 赵谨, 鲁安怀, 姜浩, 等.天然磁铁矿处理含Hg(Ⅱ)废水实验研究[J].岩石矿物学杂志, 2001, 20(4):499-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200104038
Zhao J, Lu A H, Jiang H, et al.The disposal of Hg(Ⅱ) bearing wastewater by natural magnetite[J].Acta Petrologica et Mineralogica, 2001, 20(4):499-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200104038
[17] 吴昆明, 郭华明, 魏朝俊.天然磁铁矿化学改性及其在水体除砷中的应用[J].岩矿测试, 2017, 36(1):32-39. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.005
Wu K M, Guo H M, Wei C J.Chemical modification of natural magnetite and its application in arsenic removal from a water environment[J].Rock and Mineral Analysis, 2017, 36(1):32-39. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.005
[18] 聂果, 王永杰, 李军.环境矿物材料吸附重金属的有机改性研究[J].环境科技, 2015, 28(2):76-80. doi: 10.3969/j.issn.1674-4829.2015.02.018
Nie G, Wang Y J, Li J.The organic modification research of environmental mineral material in adsorption of heavy metal[J].Environmental Science and Technology, 2015, 28(2):76-80. doi: 10.3969/j.issn.1674-4829.2015.02.018
[19] Zhao J J, Niu Y Z, Ren B, et al.Synthesis of schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution[J].Chemical Engineering Journal, 2018, 347(1):574-584. http://www.sciencedirect.com/science/article/pii/S1385894718307241
[20] Hu D, Wan X D, Li X H, et al.Synthesis of water-dispersible poly-l-lysine-functionalized magnetic Fe3O4-(GO-MWCNTs) nanocomposite hybrid with a large surface area for high-efficiency removal of tartrazine and Pb(Ⅱ)[J].International Journal of Biological Macromolecules, 2017, 105(3):1611-1621. http://www.sciencedirect.com/science/article/pii/S0141813017307857
[21] 陆中桂, 黄占斌, 李昂, 等.腐植酸对重金属铅镉的吸附特征[J].环境科学学报, 2018, 38(9):3721-3729. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201809041
Lu Z G, Huang Z B, Li A, et al.The adsorption behavior of lead and cadmium by humic acid[J].Acta Scientiae Circumstantiae, 2018, 38(9):3721-3729. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201809041
[22] Zhang W, Zheng J, Zheng P, et al.The roles of humic substances in the interactions of phenanthrene and heavy metals on the bentonite surface[J].Journal of Soils and Sediments, 2015, 15(7):1463-1472. doi: 10.1007/s11368-015-1112-8
[23] 张彩凤, 李凌燕.腐植酸对铜、锌、钼和锰的吸附研究[J].腐植酸, 2009, 6(1):11-15. http://d.old.wanfangdata.com.cn/Periodical/fzs200906003
Zhang C F, Li L Y.Study on adsorption of Cu, Zn, Mo and Mn by humic acid[J].Humic Acid, 2009, 6(1):11-15. http://d.old.wanfangdata.com.cn/Periodical/fzs200906003
[24] 朱丽珺, 张金池, 宰德欣, 等.腐殖质对Cu2+和Pb2+的吸附特性[J].南京林业大学学报, 2007, 31(4):73-76. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb200704016
Zhu L J, Zhang J C, Zai D X, et al.Study on the adsorption of heavy metal Cu2+, Pb2+by humus[J].Journal of Nanjing Forestry University, 2007, 31(4):73-76. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb200704016
[25] Khaleel A I, Raoof A, Tuzen M.Solid phase extraction containing multi-walled carbon nanotubes and eggshell membrane as adsorbent for ICP-OES determination of Pb(Ⅱ) and Cd(Ⅱ) in various water and orange fruit (peel and pulp) samples[J].Atomic Spectroscopy, 2018, 39(6):235-241.
[26] 汤智, 赵晓丽, 吴丰昌, 等.不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J].环境化学, 2015, 34(8):1520-1528. http://d.old.wanfangdata.com.cn/Periodical/hjhx201508018
Tang Z, Zhao X L, Wu F C, et al.The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension[J].Environmental Chemistry, 2015, 34(8):1520-1528. http://d.old.wanfangdata.com.cn/Periodical/hjhx201508018
[27] 张娟, 邓慧萍, 薮谷智規, 等.新型磁性聚谷氨酸吸附剂对水中Pb2+的吸附去除[J].环境科学, 2011, 32(11):3348-3356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201111034
Zhang J, Deng H P, Yabutani T, et al.Study of the removal of Pb2+from aqueous solution by poly-γ-glutamic acid coated magnetic nanoparticles[J].Environmental Science, 2011, 32(11):3348-3356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201111034
[28] 梁咏梅, 刘伟, 马军.pH和腐植酸对高铁酸盐去除水中铅、镉的影响[J].哈尔滨工业大学学报, 2003, 35(5):545-548. doi: 10.3321/j.issn:0367-6234.2003.05.008
Liang Y M, Liu W, Ma J.Effect of pH and humic acid on removal of lead and cadmium by combined ferrate pretreatment and alum coagulation[J].Journal of Harbin Institute of Technology, 2003, 35(5):545-548. doi: 10.3321/j.issn:0367-6234.2003.05.008
[29] 邵坤, 赵改红, 李刚.改性磁铁矿对矿区土壤中镉的吸附性能及机理[J].矿产保护与利用, 2019, 39(2):89-94. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201902019
Shao K, Zhao G H, Li G.Adsorption properties and mechanism of modified magnetite for cadmium removal from mined soil[J].Conservation and Utilization of Mineral Resources, 2019, 39(2):89-94. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201902019
[30] Li Y H, Ding J, Luan Z, et al.Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J].Carbon, 2003, 41(14):2787-2792. doi: 10.1016/S0008-6223(03)00392-0
[31] 姜彬慧, 丽丽, 赵研, 等.pH值对天然磁铁矿吸附水中Pb2+的影响及吸附机制研究[J].功能材料, 2013, 23(44):3392-3396. http://d.old.wanfangdata.com.cn/Periodical/gncl201323007
Jiang B H, Li L, Zhao Y, et al.Adsorption mechanism of lead(Ⅱ) ions on natural magnetite from aqueous solution and effect of pH value[J].Functional Materials, 2013, 23(44):3392-3396. http://d.old.wanfangdata.com.cn/Periodical/gncl201323007
[32] 罗文倩, 魏世强.镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J].农业环境科学学报, 2009, 28(5):897-902. doi: 10.3321/j.issn:1672-2043.2009.05.006
Luo W Q, Wei S Q.Adsorption and desorption behaviors of cadmium on/from goethite and its compound colloid with humic acids[J].Journal of Agro-Environment Science, 2009, 28(5):897-902. doi: 10.3321/j.issn:1672-2043.2009.05.006
[33] Wu P X, Zhang Q, Dai Y P, et al.Adsorption of Cu(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) ions from aqueous solutions on humic acid modified Ca-montmorillonite[J].Geoderma, 2011, 164(3-4):215-219. doi: 10.1016/j.geoderma.2011.06.012
[34] 周挺进, 杨丽珍, 徐焕辉, 等.累托石/腐植酸微球对水中Cd2+的吸附及动力学研究[J].环境科学与技术, 2010, 33(10):53-56. http://www.cqvip.com/QK/90776X/201010/1001415581.html
Zhou T J, Yang L Z, Xu H H, et al.Kinetics study on adsorption of Cd2+ in water on rectorite/humic acid microspheres[J].Environmental Science & Technology, 2010, 33(10):53-56. http://www.cqvip.com/QK/90776X/201010/1001415581.html
[35] 张如玉, 刘海波, 邹雪华, 等.小麦秸秆驱动菱铁矿热解制备磁性生物质碳及其吸附Cd2+活性[J].环境科学, 2017, 38(8):3519-3528. http://d.old.wanfangdata.com.cn/Periodical/hjkx201708052
Zhang R Y, Liu H B, Zou X H, et al.Preparation of magnetic biomass carbon by thermal decomposition of siderite driven by wheat straw and its adsorption on cadmium[J].Environment Science, 2017, 38(8):3519-3528. http://d.old.wanfangdata.com.cn/Periodical/hjkx201708052
[36] 陈荣平, 张银龙, 马爱军, 等.腐植酸改性及其对镉的吸附特性[J].南京林业大学学报(自然科学版), 2014, 38(4):102-106.
Chen R P, Zhang Y L, Ma A J, et al.Study on the modification of humic acid and its adsorption to cadmium[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4):102-106.
-