中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

40Ar/39Ar定年矿物绢云母的提纯研究

张彦. 40Ar/39Ar定年矿物绢云母的提纯研究[J]. 岩矿测试, 2019, 38(6): 599-608. doi: 10.15898/j.cnki.11-2131/td.201904010042
引用本文: 张彦. 40Ar/39Ar定年矿物绢云母的提纯研究[J]. 岩矿测试, 2019, 38(6): 599-608. doi: 10.15898/j.cnki.11-2131/td.201904010042
Yan ZHANG. Study on the Separation of Sericite for 40Ar/39Ar Dating[J]. Rock and Mineral Analysis, 2019, 38(6): 599-608. doi: 10.15898/j.cnki.11-2131/td.201904010042
Citation: Yan ZHANG. Study on the Separation of Sericite for 40Ar/39Ar Dating[J]. Rock and Mineral Analysis, 2019, 38(6): 599-608. doi: 10.15898/j.cnki.11-2131/td.201904010042

40Ar/39Ar定年矿物绢云母的提纯研究

  • 基金项目:
    国家自然科学基金面上项目(41573049);中国地质调查局地质矿产调查评价专项(DD20190001,DD20190004)
详细信息
    作者简介: 张彦, 教授级高级工程师, 主要从事40Ar/39Ar年代学研究。E-mail:yzhang737@sina.com
  • 中图分类号: P597.3;P619.273

Study on the Separation of Sericite for 40Ar/39Ar Dating

  • 绢云母的40Ar/39Ar年龄是研究矿床形成年龄的重要手段,但是40Ar/39Ar定年矿物绢云母的提纯一直是一个难题。现有分离提纯方法得到的绢云母集合体中通常含有微斜长石,如本研究中常规磁选-重液法得到的微斜长石含量在0~28%,常规悬浮液法得到的微斜长石含量在3%~45%。当绢云母集合体中的微斜长石含量超过10%时,会直接影响测年的准确性。为探索一种有效的绢云母提纯方法,本文首先考察了常规磁选-重液法和常规悬浮液法的提纯效果,实验结果表明两种方法得到的绢云母纯度均不高,而且常规悬浮液法的粒度有时很细,不能满足定年要求。进而采用超声波解离-悬浮液法对磁选-重液法得到的含微斜长石的绢云母集合体进行了条件实验,绢云母的纯度从28%提高到77%,微斜长石相对于绢云母的含量从12.5%降为0。绢云母的粒度大于1μm的占比在95%以上,最小粒度大于0.356μm,大于39Ar核反冲丢失的理论估算值0.08μm,该粒度下的绢云母在接受中子照射过程中不会引起明显的核反冲丢失,对中高温阶段的40Ar/39Ar年龄影响不大。研究认为,对于采用磁选-重液法得到的绢云母集合体,当其中的微斜长石含量大于10%时,可以采用超声波解离-悬浮液法进一步富集绢云母,降低微斜长石的含量,保证测年的准确性。
  • 加载中
  • 表 1  采用磁选-重液法获得绢云母集合体粉晶X射线衍射矿物定量分析结果

    Table 1.  X-ray diffraction results of sericite-bearing aggregates concentrated with magnet-heavy liquid method

    样品编号 绢云母集合体中矿物相对含量(%) 多型
    石英 绢云母 绿泥石 斜长石 微斜长石 方解石 纤铁矿 赤铁矿 蒙皂石
    FS1 35 29 20 9 4 3 - - - 2M1
    FS3 19 62 19 - - - - - - 2M1
    FS4 - 68 12 - 13 - - - 7 2M1
    FS5 27 20 24 13 7 - - - 9 2M1
    FS6 25 31 24 - 11 - 9 - - 2M1
    FS7 - 33 39 - 28 - - - - 2M1
    FS8 58 26 11 - 5 - - - - 2M1
    FS9 97 3 - - - - - - - 2M1
    FS10 68 28 - - 4 - - - - 2M1
    FS11 68 28 - - 4 - - - - 2M1
    FS12 55 31 - 7 3 - - 4 - 2M1
    FS13 - 79 7 - 14 - - - - 2M1
    FS14 47 53 - - - - - - - 2M1
    FS20 42 28 10 6 4 - - - 10 2M1
    FS25 10 14 57 11 8 - - - - 2M1
    W 53 30 6 7 4 - - - - 2M1
    注:表中“-”表示未检出,下面各表同。
    下载: 导出CSV

    表 2  采用常规悬浮液法获得绢云母集合体粉晶X射线衍射矿物定量分析结果

    Table 2.  X-ray diffraction results of sericite-bearing aggregates concentrated with conventional suspension method

    样品编号 绢云母集合体中矿物相对含量(%)
    石英 绢云母 绿泥石 斜长石 微斜长石 方铅矿 闪锌矿 高岭石 黄铁矿 方解石
    FS15 66 27 - 4 3 - - - - -
    FS16 32 16 3 - 44 - - - 5 -
    FS17 41 28 - - 22 - - - 9 -
    FS18 47 26 - - 22 - - - 5 -
    FS19 40 12 - - 45 - - - 3 -
    FS21 - 49 - - - 23 18 10 - -
    FS22 23 13 6 - 23 - - - 2 33
    下载: 导出CSV

    表 3  采用常规悬浮液法获得绢云母集合体激光粒度分析结果

    Table 3.  Grain sizes measured by laser particle size analyzer for sericite-bearing aggregate concentrated with conventional suspension method

    样品编号FS15 样品编号FS21
    粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%)
    1.096 - 11.482 - 0.010 - 0.105 - 1.096 - 11.482 -
    1.259 0.00 13.183 8.89 0.011 0.00 0.120 7.91 1.259 0.00 13.183 0.13
    1.445 0.00 15.136 9.04 0.013 0.00 0.138 7.95 1.445 0.00 15.136 0.01
    1.660 0.00 17.378 8.77 0.015 0.00 0.158 7.54 1.660 0.01 17.378 0.00
    1.905 0.00 19.953 8.07 0.017 0.00 0.182 6.69 1.905 0.27 19.953 0.00
    2.188 0.02 22.909 7.03 0.020 0.00 0.209 5.44 2.188 0.68 22.909 0.00
    2.512 0.14 26.303 5.75 0.023 0.00 0.240 3.93 2.512 1.19 26.303 0.00
    2.884 0.32 30.200 4.43 0.026 0.00 0.275 2.34 2.884 1.77 30.200 0.00
    3.311 0.63 34.674 3.21 0.030 0.00 0.316 0.82 3.311 2.34 34.674 0.00
    3.802 1.05 39.811 2.09 0.035 0.00 0.363 0.00 3.802 2.83 39.811 0.00
    4.365 1.62 45.709 1.12 0.040 0.23 0.417 0.00 4.365 3.17 45.709 0.00
    5.012 2.35 52.481 0.34 0.046 1.15 0.479 0.00 5.012 3.30 52.481 0.00
    5.754 3.22 60.256 0.00 0.052 1.93 0.550 0.00 5.754 3.22 60.256 0.00
    6.607 4.24 69.183 0.00 0.060 2.90 0.631 0.00 6.607 2.91 69.183 0.00
    7.586 5.34 79.433 0.00 0.069 4.06 0.724 0.00 7.586 2.40 79.433 0.00
    8.710 6.47 91.201 0.00 0.079 5.43 0.832 0.00 8.710 1.76 91.201 0.00
    10.000 7.50 104.713 0.00 0.091 6.60 0.955 0.00 10.000 1.11 104.713 0.00
    11.482 8.35 120.226 0.00 0.105 7.44 1.096 0.00 11.482 0.54 120.226 0.00
    注:表中每个粒度对应的“范围内体积”的数值,表示该粒级与相邻上一个粒级之间具有的所有颗粒的体积分数,以下粒度分析表格中的数据含义相同。
    下载: 导出CSV

    表 4  采用超声波解离-悬浮液法获得绢云母集合体粉晶X射线衍射矿物定量分析结果

    Table 4.  X-ray diffraction results of sericite-bearing aggregates concentrated with ultrasonic disaggregation-suspension method

    样品编号 绢云母集合体中矿物相对含量(%)
    绿泥石 绢云母 微斜长石 斜长石 蒙皂石 石盐 闪石 石英
    FS11-1上 - 63 4 - - - - 33
    FS11-5上 - 71 3 - - - - 26
    FS20上-1 11 41 6 7 16 - - 19
    FS20-20S-2 23 77 - - - - - -
    FS7-10上 16 53 12 - - 8 11 -
    下载: 导出CSV

    表 5  采用超声波解离-悬浮液法获得绢云母集合体激光粒度分析结果

    Table 5.  Grain sizes measured by laser particle size analyzer for sericite-bearing aggregate concentrated with ultrasonic disaggregation-suspension method

    样品FS11-1 样品FS11-5 样品FS20上-1 样品FS20-20S-2
    粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%) 粒度(μm) 范围内体积(%)
    1.096 - 11.482 - 1.096 - 11.482 - - - 1.096 11.482 0.142 - 1.002 - 7.096 -
    1.259 0.00 13.183 9.04 1.259 0.00 13.183 9.27 - - 1.259 0.00 13.183 4.72 0.159 0.00 1.125 0.49 7.962 6.71
    1.445 0.00 15.136 9.01 1.445 0.00 15.136 9.26 - - 1.445 0.00 15.136 3.37 0.178 0.00 1.262 0.53 8.934 6.34
    1.660 0.00 17.378 8.55 1.660 0.00 17.378 8.78 - - 1.660 0.01 17.378 2.22 0.200 0.00 1.416 0.63 10.024 5.80
    1.905 0.00 19.953 7.69 1.905 0.00 19.953 7.87 - - 1.905 0.45 19.953 1.33 0.224 0.00 1.589 0.79 11.247 5.10
    2.188 0.01 22.909 6.55 2.188 0.01 22.909 6.67 - - 2.188 1.21 22.909 0.64 0.252 0.00 1.783 1.05 12.619 4.33
    2.512 0.12 26.303 5.26 2.512 0.12 26.303 5.28 - - 2.512 2.31 26.303 0.10 0.283 0.00 2.000 1.38 14.159 3.52
    2.884 0.31 30.200 3.98 2.884 0.31 30.200 3.90 - - 2.884 3.67 30.200 0.00 0.317 0.00 2.244 1.81 15.887 2.74
    3.311 0.65 34.674 2.81 3.311 0.64 34.674 2.61 - - 3.311 5.16 34.674 0.00 0.356 0.00 2.518 2.32 17.825 2.04
    3.802 1.11 39.811 1.85 3.802 1.10 39.811 1.49 - - 3.802 6.64 39.811 0.00 0.399 0.03 2.825 2.91 20.000 1.44
    4.365 1.74 45.709 1.11 4.365 1.74 45.709 0.54 - - 4.365 7.96 45.709 0.00 0.448 0.11 3.170 3.56 22.440 0.97
    5.012 2.53 52.481 0.47 5.012 2.54 52.481 0.00 - - 5.012 9.00 52.481 0.00 0.502 0.26 3.557 4.24 25.179 0.61
    5.754 3.48 60.256 0.03 5.754 3.51 60.256 0.00 - - 5.754 9.64 60.256 0.00 0.564 0.35 3.991 4.93 28.251 0.37
    6.607 4.57 69.183 0.00 6.607 4.63 69.183 0.00 - - 6.607 9.80 69.183 0.00 0.632 0.42 4.477 5.57 31.698 0.21
    7.586 5.73 79.433 0.00 7.586 5.81 79.433 0.00 - - 7.586 9.46 79.433 0.00 0.710 0.47 5.024 6.13 35.566 0.09
    8.710 6.88 91.201 0.00 8.710 7.00 91.201 0.00 - - 8.710 8.65 91.201 0.00 0.796 0.48 5.637 6.56 39.905 0.04
    10.000 7.88 104.713 0.00 10.000 8.05 104.713 0.00 - - 10.000 7.51 104.713 0.00 0.893 0.48 6.325 6.81 44.774 0.00
    11.482 8.64 120.226 0.00 11.482 8.85 120.226 0.00 - - 11.482 6.14 120.226 0.00 1.002 0.48 7.096 6.87 50.238 0.00
    下载: 导出CSV

    表 6  Fish Canyon透长石不同粒级40Ar/39Ar年龄结果

    Table 6.  40Ar/39Ar dating results for each fraction of the Fish Canyon sanidine

    粒度(μm) 样品数量(份) 年龄(Ma, 2σ)
    < 5 6 28.79±0.12
    5~10 6 28.47±0.13
    10~15 6 28.29±0.13
    15~22 5 28.34±0.09
    22~28 6 28.35±0.22
    28~34 6 28.23±0.06
    34~38 5 28.47±0.08
    38~53 5 28.14±0.03
    下载: 导出CSV
  • [1]

    高允, 孙艳, 赵芝, 等.内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义[J].岩矿测试, 2017, 36(5):551-558. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201612290190

    Gao Y, Sun Y, Zhao Z, et al.40Ar-39Ar dating of muscovite from the Zhaojinggou Nb-Ta polymetallic depositin Wuchuan county of Inner Mongolia and its geological implications[J].Rock and Mineral Analysis, 2017, 36(5):551-558. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201612290190

    [2]

    刘国仁, 李彦, 王蕊, 等.新疆额尔齐斯构造带哲兰德金矿白云母40Ar/39Ar同位素年龄及地质意义[J].岩矿测试, 2018, 37(6):705-712. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707130118

    Liu G R, Li Y, Wang R, et al.40Ar/39Ar dating of muscovite from the Zhelande Au deposit, Irtysh tectonic zone, Xinjiang and its geological implications[J].Rock and Mineral Analysis, 2018, 37(6):705-712. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707130118

    [3]

    侯淋, 唐菊兴, 林彬, 等.西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义[J].岩矿测试, 2017, 36(4):440-449. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201612050179

    Hou L, Tang J X, Lin B, et al.Element migration during alteration and 40Ar/39Ar dating of sericite from the Dongwodong deposit, Tibet and its geological significance[J].Rock and Mineral Analysis, 2017, 36(4):440-449. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201612050179

    [4]

    高建京, 毛景文, 陈懋弘, 等.豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定[J].地质学报, 2011, 85(7):1172-1187. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201107010

    Gao J J, Mao J W, Chen M H, et al.Vein structure analysis and 40Ar/39Ar dating of sericite from sub-ore altered rocks in the Tieluping large-size Ag-Pb deposit of Western Henan Province[J].Acta Geologica Sinica, 2011, 85(7):1172-1187. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201107010

    [5]

    高永伟, 张振亮, 王志华, 等.西天山卡特巴阿苏金矿床成矿年代学及其地质意义——来自绢云母40 Ar-39 Ar同位素年龄证据[J].地质与勘探, 2015, 51(5):805-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201505001

    Gao Y W, Zhang Z L, Wang Z H, et al.Geochronology of the Katabaasu gold deposit in west tian shan and its geological significance:Evidence from 40Ar-39Ar isotopic ages of sericite[J].Geology and Exploration, 2015, 51(5):805-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201505001

    [6]

    胡芳芳, 范宏瑞, 杨进辉, 等.胶东乳山金矿蚀变岩中绢云母40Ar/39Ar年龄及其对金成矿事件的制约[J].矿物岩石地球化学通报, 2006, 25(2):109-114. doi: 10.3969/j.issn.1007-2802.2006.02.001

    Hu F F, Fan H R, Yang J H, et al.The 40Ar/39Ar dating age of sericite from altered rocks in the Rushan gold deposit, Jiaodong Peninsula and its constraints on the gold mineralization[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(2):109-114. doi: 10.3969/j.issn.1007-2802.2006.02.001

    [7]

    纪现华, 孟祥金, 杨竹森, 等.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义[J].地质与勘探, 2014, 50(2):281-290. http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008

    Ji X H, Meng X J, Yang Z S, et al.The Ar-Ar geochronology of sericite from the cryptoexplosive breccia type Pb-Zn deposit in Narusongduo, Tibet and its geological significance[J].Geology and Exploration, 2014, 50(2):281-290. http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008

    [8]

    李金超, 孔会磊, 栗亚芝, 等.青海东昆仑瑙木浑金矿蚀变绢云母Ar-Ar年龄、石英闪长岩锆石U-Pb年龄和岩石地球化学特征[J].地质学报, 2017, 9(5):979-994. doi: 10.3969/j.issn.0001-5717.2017.05.002

    Li J C, Kong H L, Li Y Z, et al.Ar-Ar age of altered sericite, zircon U-Pb age of quartz diorite and geochemistry of the Naomuhun gold deposit, East Kunlun[J].Acta Geologica Sinica, 2017, 9(5):979-994. doi: 10.3969/j.issn.0001-5717.2017.05.002

    [9]

    刘协鲁, 王义天, 胡乔青.陕西凤太矿集区柴蚂金矿床成矿时代的40Ar-39Ar年龄证据[J].矿床地质, 2018, 37(1):163-174. http://d.old.wanfangdata.com.cn/Periodical/kcdz201801012

    Liu X L, Wang Y T, Hu Q Q.Evidence of 40Ar/39Ar age data for ore-forming time of Chaima gold deposit in Fengtai ore concentration area, Shaanxi Province[J].Mineral Deposits, 2018, 37(1):163-174. http://d.old.wanfangdata.com.cn/Periodical/kcdz201801012

    [10]

    梁维, 杨竹森, 郑远川.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J].地质学报, 2015, 89(3):560-568. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503009

    Liang W, Yang Z S, Zheng Y C.The Zhaxikang Pb-Zn polymetallic deposit:Ar-Ar age of sericite and its metallogenic significance[J].Acta Geologica Sinica, 2015, 89(3):560-568. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503009

    [11]

    袁霞, 陈文, 张斌, 等.西天山望峰金矿床绢云母40Ar/39Ar年龄及矿床成因研究[J].矿床地质, 2017, 36(1):57-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701004

    Yuan X, Chen W, Zhang B, et al.40Ar/39Ar age of sericite and genetic study of Wangfeng gold deposite, West Tianshan Mountains[J].Mineral Deposits, 2017, 36(1):57-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701004

    [12]

    张万益, 聂凤军, 刘妍, 等.内蒙古奥尤特铜-锌矿床绢云母40Ar-39Ar同位素年龄及地质意义[J].地球学报, 2008, 9(5):592-598. doi: 10.3321/j.issn:1006-3021.2008.05.008

    Zhang W Y, Nie F J, Liu Y, et al.40Ar-39Ar geochro-nology of the Aoyoute Cu-Zn deposit in Inner Mongolia and its significance[J].Acta Geoscientica Sinica, 2008, 9(5):592-598. doi: 10.3321/j.issn:1006-3021.2008.05.008

    [13]

    祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义[J].矿床地质, 2013, 32(5):954-962. doi: 10.3969/j.issn.0258-7106.2013.05.007

    Zhu X P, Chen H A, Ma D F, et al.40Ar/39Ar dating of hydrothermal K-feldspar and hydrothermal sericite from Bolong porphyry Cu-Au deposit in Tibet[J].Mineral Deposits, 2013, 32(5):954-962. doi: 10.3969/j.issn.0258-7106.2013.05.007

    [14]

    Brhlke J K, Irwin J J.Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions:Analyses of microstandards and synthetic inclusions in quartz[J].Geochimica et Cosmochimica Acta, 1992, 56(1):187-201. doi: 10.1016/0016-7037(92)90126-4

    [15]

    Dong H, Hall C M, Peacor D R, et al.Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating[J].Science, 1995, 267(5196):355-359. doi: 10.1126/science.267.5196.355

    [16]

    Dong H, Hall C M, Halliday A N, et al.40Ar/39Ar illite dating of Late Caledonian (Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh Basin, U.K[J].Earth and Planetary Science Letters, 1997, 150(3-4):337-351. doi: 10.1016/S0012-821X(97)00100-3

    [17]

    Dong H L, Hall C M, Halliday A N, et al.Laser 40Ar-39Ar dating of microgra-size illite samples and implication for thin section dating[J].Geochimica et Cosmochimica Acta, 1997, 61(18):3803-3808. doi: 10.1016/S0016-7037(97)00286-X

    [18]

    Fred J, Jennifer P M, Paul R R.39Ar and 37Ar recoil loss during neutron irradiation of sanidine and plagioclase[J].Geochimica et Cosmochimica Acta, 2007, 71(11):2791-2808. doi: 10.1016/j.gca.2007.03.017

    [19]

    Foland K A, Linder J S, Laskowski T E, et al.40Ar-39Ar dating of glauconies:Measured 39Ar recoil loss from well-crystallized specimens[J].Chemical Geology, 1984, 46(3):241-264. http://www.sciencedirect.com/science/article/pii/000925418490192X

    [20]

    Foland K A, Hubacher F A, Arehart G B.40Ar/39Ar dating of very fine-grained samples:An encapsulated-vial procedure to overcome the problem of 39Ar recoil loss[J].Chemical Geology, 1992, 102(1-4):269-276. doi: 10.1016/0009-2541(92)90161-W

    [21]

    Halliday A N.40Ar-39Ar stepheating studies of clay concentrates from Irish orebodies[J].Geochimica et Cosmochimica Acta, 1978, 42(12):1851-1858. doi: 10.1016/0016-7037(78)90240-5

    [22]

    Harrison T M, Fitz J D.Exsolution in hornblende and its consequences for 40Ar/39Ar age spectra and closure temperature[J].Geochimica et Cosmochimica Acta, 1986, 50(2):247-253. doi: 10.1016/0016-7037(86)90173-0

    [23]

    Hess J C, Lippolt H J.Kinetics of Ar isotopes during neutron irradiation-39Ar loss from minerals as a source of error in 40Ar/39Ar dating[J].Chemical Geology, 1986, 59:223-236. doi: 10.1016/0168-9622(86)90073-4

    [24]

    Jeffrey H P, Se'bastien N, Paul R R.Quantification of 39Ar recoil ejection from GA1550 biotite during neutron irradiation as a function of grain dimensions[J].Geochimica et Cosmochimica Acta, 2006, 70(6):1507-1517. doi: 10.1016/j.gca.2005.11.012

    [25]

    Lo C H, Onstott T C.39Ar recoil artifacts in chloritized biotite[J].Geochimica et Cosmochimica Acta, 1989, 53:2697-2711. doi: 10.1016/0016-7037(89)90141-5

    [26]

    Lin L H, Onstott T C, Dong H L.Backscattered 39Ar loss in fine-grained minerals:Implications for 40Ar/39Ar geochronology of clay[J].Geochimica et Cosmochimica Acta, 2000, 64(23):3965-3974. doi: 10.1016/S0016-7037(00)00439-7

    [27]

    Min K, Renne P R, Huff W D.40Ar/39Ar dating of Ordovician K-bentonites in Laurentia and Baltoscandia[J].Earth and Planetary Science Letters, 2001, 185(1-2):121-134. doi: 10.1016/S0012-821X(00)00365-4

    [28]

    Onstott T C, Miller M L, Ewing R C, et al.Recoil refinements:Implications for the 40Ar/39Ar dating technique[J].Geochimica et Cosmochimica Acta, 1995, 59(9):1821-1834. doi: 10.1016/0016-7037(95)00085-E

    [29]

    Onstott T C, Mueller C, Vrolijk P J, et al.Laser 40Ar/39Ar microprobe analyses of fine-grained illite[J].Geochimica et Cosmochimica Acta, 1997, 61(18):3851-3861. doi: 10.1016/S0016-7037(97)00288-3

    [30]

    Smith P E, Evensen N M, York D.First successful 40Ar-39Ar dating of glauconies:Argon recoil in single grains of cryptocrystalline material[J].Geology, 1993, 21(1):41-44. http://www.researchgate.net/publication/249519847_First_successful_40Ar39Ar_dating_of_glauconies_Argon_recoil_in_single_grains_of_cryptocrystalline_material

    [31]

    Tseng H Y, Heaney P E, Onstott T C.Characterization of lattice strain induced by neutron irradiation[J].Physics and Chemistry of Minerals, 1995, 22(6):399-405. http://link.springer.com/article/10.1007/BF00213338

    [32]

    Liewig N, Clauer N, Sommer F.Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone reservoirs[J].American Association of Petroleum Geologists Bulletin, 1987, 71:1467-1474. http://cn.bing.com/academic/profile?id=cfcc7df32e7e6a8d1aac9c50743ae959&encoded=0&v=paper_preview&mkt=zh-cn

    [33]

    黄宝玲, 王大锐.沉积岩中自生黏土矿物分离提纯方法的改进[J].岩矿测试, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012 http://www.ykcs.ac.cn/article/id/ykcs_20010362

    Huang B L, Wang D R.An improved method for separation of authigenic clay minerals from sedimentary rocks[J].Rock and Mineral Analysis, 2001, 20(3):214-216. doi: 10.3969/j.issn.0254-5357.2001.03.012 http://www.ykcs.ac.cn/article/id/ykcs_20010362

    [34]

    Clauer N.The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals[J].Chemical Geology, 2013, 354:163-185. doi: 10.1016/j.chemgeo.2013.05.030

    [35]

    李贺臣.超声波分选法分离蚀变绢云母[J].地质与勘探, 1982(11):31. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198211018.htm

    Li H C.Ultrasonic separation of sericites[J].Geology and Exploration, 1982(11):31. http://www.cnki.com.cn/Article/CJFDTotal-DZKT198211018.htm

  • 加载中

(6)

计量
  • 文章访问数:  1645
  • PDF下载数:  57
  • 施引文献:  0
出版历程
收稿日期:  2019-04-01
修回日期:  2019-05-30
录用日期:  2019-07-16

目录