Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion
-
摘要: 和田玉的稀土元素丰富,准确测定稀土元素含量对于揭示和田玉成矿物质来源、成矿流体的性质和矿床成因具有重要的意义。本文通过比较硝酸-氢氟酸、四硼酸锂-偏硼酸锂碱熔两种前处理方法,确定了使用硝酸-氢氟酸溶样,再采用电感耦合等离子体质谱法(ICP-MS)测定和田玉中钇镧铈镨钕钐铕钆铽镝钬铒铥镱镥15种稀土元素的含量。为降低基体效应,以103Rh和49In作内标补偿基体效应和校正灵敏度漂移,样品检出限为0.0008~0.0091μg/L,回收率为101.0%~120.0%,精密度(RSD)为0.55%~1.83%(n=11)。本方法的用酸量少,空白值低,应用于不同地区和田玉的分析,其稀土元素的配分模式特征为右倾型轻稀土富集,初步探讨的稀土元素丰度特征可为研究主产区宝玉石的矿床成因提供依据。
-
关键词:
- 和田玉 /
- 稀土元素 /
- 硝酸-氢氟酸 /
- 酸溶 /
- 电感耦合等离子体质谱法
Abstract:BACKGROUNDThere are abundant rare earth elements in Hetian jade. The accurate determination of the content of rare earth elements is of great significance for revealing the source of ore-forming materials, the nature of ore-forming fluids and the genesis of the deposit. OBJECTIVESTo compare the different acid systems in microware digestion and investigate the elimination test of polyatomic interferences, so as to develop a method for the determination of REE in Hetian jade by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion. METHODSAfter comparing the efficiency of HNO3-HF acid dissolution and Li2B4O7-LiBO2 fusion, the Hetian jade samples were digested by HNO3-HF. Fifteen rare earth elements were determined by ICP-MS. 103Rh and 49In are used as internal isotopes to complement matrix effect and correct sensitivity drift, in order to reduce matrix effect. RESULTSThe detection limits of the method were 0.0008-0.0091μg/L, whereas the recoveries were 101.0%-120.0%. The relative standard deviation was 0.55%-1.83%(n=11). CONCLUSIONSThis method uses less acid and has a low blank value. It is applied to the analysis of Hetian jade in different regions. The distribution pattern of rare earth elements is characterized by right-inclined light rare earth enrichment, which provides constraints on the genesis of the jade deposit. -
Key words:
- Hetian jade /
- Trace elements /
- rare earth elements /
- inductively coupled plasma-mass spectrometry /
-
表 1 ICP-MS仪器工作条件
Table 1. Working parameters of the ICP-MS instrument
工作参数 设定条件 功率 1100W 冷却气流量 18.0L/min 辅助气流量 1.2L/min 雾化气流量 0.93L/min 采样锥孔径 1.0mm 截取锥孔径 0.5mm 测定方式 跳峰 扫描次数 30 停留时间/通道 15ms 每个质量通道数 3 总采集时间 20s 表 2 标准曲线及相关指标
Table 2. Standard curves and related indexes
稀土元素 回归方程 相关系数 方法检出限(μg/L) 浓度范围(μg/L) RSD (%) 重复性实验(%) 89Y y=11273.6x+34.3358 0.9999 0.0008 0~10 0.68 1.32 139La y=21295.6x+34.3538 0.9999 0.0036 0~10 0.72 1.58 140Ce y=22152.2x+49.7987 0.9999 0.0078 0~10 0.78 0.61 141Pr y=41075x+100.858 0.9999 0.0029 0~10 1.76 0.58 142Nd y=12737.1x+10.0332 0.9999 0.0010 0~10 1.83 0.72 152Sm y=14301.6x+48.3617 0.9999 0.0015 0~10 0.93 0.84 153Eu y=1.844771x+0.11593 0.9999 0.0027 0~10 0.72 0.79 158Gd y=1.471487x+0.19631 0.9998 0.0058 0~10 1.80 2.82 159Tb y=47088x+305.9453 0.9999 0.0022 0~10 1.72 3.98 164Dy y=13553.3x+106.294 0.9999 0.0091 0~10 0.62 0.99 165Ho y=46616.3x+243.263 0.9999 0.0014 0~10 0.61 0.41 166 Er y=15467.7x+83.3893 0.9999 0.0029 0~10 0.69 2.76 169Tm y=47700x+250.002 0.9999 0.0009 0~10 0.80 1.08 174Yb y=16328x+144.771 0.9999 0.0067 0~10 0.79 0.68 175Lu y=44003x+405.547 0.9998 0.0013 0~10 0.55 1.65 表 3 稳定性和加标回收率试验结果
Table 3. Results of the stability and recovery tests
稀土元素 RSD (%) 加标量(μg/L) 初始值(μg/L) 检测值(μg/L) 回收率(%) 89Y 2.05 0.010 0.007 0.018 110.0 139La 1.56 0.2 0.141 0.344 101.5 140Ce 0.76 0.4 0.380 0.785 101.3 141Pr 0.74 0.1 0.043 0.153 110.0 142Nd 0.45 0.1 0.183 0.285 102.0 152Sm 2.82 0.05 0.047 0.098 102.0 153Eu 0.63 0.02 0.016 0.038 110.0 158Gd 0.82 0.1 0.088 0.190 102.0 159Tb 1.62 0.01 0.008 0.020 120.0 164Dy 1.36 0.05 0.045 0.098 106.0 165Ho 0.52 0.1 0.009 0.110 101.0 166 Er 2.70 0.03 0.028 0.060 106.7 169Tm 0.61 0.005 0.004 0.010 120.0 174Yb 1.52 0.03 0.025 0.058 110.0 175Lu 3.08 0.005 0.003 0.009 120.0 表 4 不同地区和田玉的稀土元素含量测试结果
Table 4. Determination of rare earth elements in Hetian jade in different regions
样品编号 稀土元素测定值(μg/kg) Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu RQ-1 0.007 0.141 0.308 0.041 0.180 0.041 0.014 0.081 0.008 0.046 0.009 0.026 0.004 0.022 0.003 RQ-2 0.006 0.143 0.326 0.042 0.185 0.043 0.014 0.086 0.008 0.049 0.010 0.028 0.004 0.023 0.004 QM-1 0.015 0.235 0.149 0.043 0.185 0.032 0.009 0.056 0.006 0.032 0.007 0.021 0.002 0.015 0.002 QM-2 0.195 0.220 0.198 0.044 0.187 0.033 0.009 0.062 0.006 0.034 0.007 0.023 0.003 0.019 0.003 YT-1 0.157 0.070 0.114 0.018 0.083 0.018 0.003 0.033 0.004 0.022 0.005 0.015 0.002 0.013 0.002 YT-2 0.010 0.107 0.244 0.033 0.152 0.036 0.006 0.074 0.007 0.045 0.010 0.032 0.004 0.028 0.004 YC-1 0.001 0.026 0.094 0.007 0.031 0.009 0.004 0.021 0.001 0.009 0.002 0.006 0.001 0.006 0.001 YC-2 0.137 0.107 0.260 0.028 0.111 0.021 0.005 0.050 0.003 0.020 0.004 0.015 0.002 0.015 0.003 -
[1] Yu J, Hou Z, Sheta S, et al.Provenance classification of nephrite jades using multivariate LIBS:A comparative study[J]. Analytical Methods, 2018, 3:10.
[2] 杨萍, 丘志力, 陈炳辉, 等.现代微区测试技术在确定宝玉石产地来源中的应用及其研究进展[J].宝石和宝石学杂志, 2009, 11(1):1-11. doi: 10.3969/j.issn.1008-214X.2009.01.001
Yang P, Qiu Z L, Chen B H, et al.Application of modern micro-zone testing technology in determining the origin of gemstone and its research progress[J]. Journal of Gems & Gemology, 2009, 11(1):1-11. doi: 10.3969/j.issn.1008-214X.2009.01.001
[3] 鲁力, 魏均启, 王芳, 等.和田玉物质成分及结构类型对比研究[J].资源环境与工程, 2015, 29(1):85-90. doi: 10.3969/j.issn.1671-1211.2015.01.019
Lu L, Wei J Q, Wang F, et al.Comparative study on material composition and structure type of Hetian jade[J]. Resource Environment and Engineering, 2015, 29(1):85-90. doi: 10.3969/j.issn.1671-1211.2015.01.019
[4] 《岩石矿物分析》编委会.岩矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:448-476.
The editorial committee of < Rock and mineral analysis>. Rock and mineral analysis (The fourth edition, Vol.Ⅲ)[M]. Beijing:Geological Publishing House, 2011:448-476.
[5] 周国兴, 刘玺祥, 崔德松.碱熔ICP-MS法测定岩石样品中稀土等28种金属元素[J].质谱学报, 2010, 31(2):120-124. http://d.old.wanfangdata.com.cn/Periodical/zpxb201002011
Zhou G X, Liu Y X, Cui D S.Determination of 28 metal elements in rare earths and others by rock melting ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(2):120-124. http://d.old.wanfangdata.com.cn/Periodical/zpxb201002011
[6] 杨小丽, 崔森, 杨梅, 等.碱熔离子交换-电感耦合等离子体质谱法测定多金属矿中痕量稀土元素[J].冶金分析, 2011, 31(3):11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003
Yang X L, Cui S, Yang M, et al.Determination of trace rare earth elements in polymetallic ore by alkali fusion ion exchange-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2011, 31(3):11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003
[7] 陈贺海, 荣德福, 付冉冉, 等.微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J].岩矿测试, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005 http://www.ykcs.ac.cn/article/id/43948375-b200-4ee0-8402-8d679b888e06
Chen H H, Rong D F, Fu R R, et al.Determination of 15 rare earth elements in iron ore by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005 http://www.ykcs.ac.cn/article/id/43948375-b200-4ee0-8402-8d679b888e06
[8] 陈永欣, 黎香荣, 韦新红, 等.微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J].岩矿测试, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507
Chen Y X, Li X R, Wei X H, et al.Determination of trace rare earth elements in soil and sediment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507
[9] 贾双琳, 赵平, 杨刚, 等.混合酸敞开或高压密闭溶样ICP-MS测定地质样品中稀土元素[J].岩矿测试, 2014, 33(2):186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005 http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5
Jia S L, Zhao P, Yang G, et al.Determination of rare earth elements in geological samples by mixed acid open or high pressure sealed sample ICP-MS[J]. Rock and Mineral Analysis, 2014, 33(2):186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005 http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5
[10] Liang Q, Jing H, Gregoire D C.Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3):507-513 doi: 10.1016/S0039-9140(99)00318-5
[11] 张晨芳, 李墨, 杨颖, 等.密闭压力酸溶-电感耦合等离子体质谱法测定岩浆岩中稀有元素[J].分析科学学报, 2018, 34(6):99-103. http://d.old.wanfangdata.com.cn/Periodical/fxkxxb201806017
Zhang C F, Li M, Yang Y, et al.Determination of rare elements in magmatic rocks by closed pressure acid-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2018, 34(6):99-103. http://d.old.wanfangdata.com.cn/Periodical/fxkxxb201806017
[12] 吴葆存, 于亚辉, 闫红岭, 等.碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J].冶金分析, 2016, 36(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607006
Wu B C, Yu Y H, Yan H L, et al.Determination of rare earth elements in tungsten ore and molybdenum ore by alkali fusion-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607006
[13] 徐静, 李宗安, 李明来, 等.微波消解-电感耦合等离子体原子发射光谱法测定稀土合金渣中主要稀土氧化物[J].冶金分析, 2012, 32(11):46-50. doi: 10.3969/j.issn.1000-7571.2012.11.010
Xu J, Li Z A, Li M L, et al.Determination of main rare earth oxides in rare earth alloy slag by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012, 32(11):46-50. doi: 10.3969/j.issn.1000-7571.2012.11.010
[14] Bakircioglu D, Topraksever N, Yurtsever S, et al.ICP-OES determination of some trace elements in herbal oils using a three-phase emulsion method and comparison with conventional methods[J]. Atomic Spectroscopy, 2018, 39(1):38-45. doi: 10.46770/AS.2018.01.005
[15] Anjos S L D, Alves J C, Soares S A R, et al.Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP-OES[J]. Talanta, 2018, 178:842. doi: 10.1016/j.talanta.2017.10.010
[16] Zhang N, Li Z, Zheng J, et al.Multielemental analysis of botanical samples by ICP-OES and ICP-MS with focused infrared lightwave ashing for sample preparation[J]. Microchemical Journal, 2017, 134:68-77. doi: 10.1016/j.microc.2017.05.006
[17] Khorge C R, Patwardhan A A.Separation and determin-ation of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J]. Atomic Spectroscopy, 2018, 39(2):75-80. doi: 10.46770/AS.2018.02.004
[18] Arslan Z, Oymak T, White J.Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for deter-mination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Analytica Chimica Acta, 2018, 1008:18-28. doi: 10.1016/j.aca.2018.01.017
[19] Tel-Cayan G, Ullah Z, Ozturk M, et al.Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS[J]. Atomic Spectroscopy, 2018, 39(1):29-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bd25226c89b8fdecc76151f978b676e
[20] Kuznetsova O V, Burmii Z P, Orlova T V, et al.Quan-tification of the diagenesis-designating metals in sediments by ICP-MS:Comparison of different sample preparation methods[J]. Talanta, 2019, 200:468-471. doi: 10.1016/j.talanta.2019.03.001
[21] Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399d63251e1afd27679392d6e00fdd4d
[22] Okina O I, Lyapunov S M, Dubensky A S.Influence of sample treatment after bomb digestion on determination of trace elements in rock samples by ICP-MS[J]. Microchemical Journal, 2018, 140:123-128. doi: 10.1016/j.microc.2018.04.020
[23] Yin X, Wang X, Chen S, et al.Trace element determin-ation in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J]. Atomic Spectroscopy, 2018, 39(4):137-141. doi: 10.46770/AS.2018.04.001
[24] 陈永欣, 黎香荣, 韦新红, 等.微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J].岩矿测试, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507
Chen Y X, Li X R, Wei X H, et al.Determination of trace rare earth elements in soil and sediment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507
[25] 马莉, 司晗.微波消解样品-电感耦合等离子体质谱法同时测定土壤中重金属元素和稀土元素[J].环境科学导刊, 2016(2):88-91. doi: 10.3969/j.issn.1673-9655.2016.02.019
Ma L, Si H.Simultaneous determination of heavy metals and rare earth elements in soil by microwave digestion sample-inductively coupled plasma mass spectrometry[J]. Environmental Science Survey, 2016(2):88-91. doi: 10.3969/j.issn.1673-9655.2016.02.019
[26] 戴雪峰, 董利明, 蒋宗明.电感耦合等离子体质谱(ICP-MS)法测定地质样品中重稀土元素和钍、铀[J].中国无机分析化学, 2016, 6(4):20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006
Dai X F, Dong L M, Jiang Z M.Determination of heavy rare earth elements and lanthanum and uranium in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(4):20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006
[27] 孙德忠, 安子怡, 许春雪, 等.四种前处理方法对电感耦合等离子体质谱测定植物样品中27种微量元素的影响[J].岩矿测试, 2012, 31(6):961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008 http://www.ykcs.ac.cn/article/id/ykcs_20120609
Sun D Z, An Z Y, Xu C X, et al.Comparison of different digestion procedures for elemental determination in plant samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6):961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008 http://www.ykcs.ac.cn/article/id/ykcs_20120609
[28] 赵楠楠, 黄慧萍, 李艳玲, 等.电感耦合等离子体质谱法测定金红石单矿物中痕量稀土元素[J].理化检验(化学分册), 2012, 48(7):781-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204169845
Zhao N N, Huang H P, Li Y L, et al.Determination of trace rare earth elements in rutile single minerals by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2012, 48(7):781-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204169845
[29] 刘勤志, 吴堑虹.ICP-MS测定铝土矿中的稀土元素[J].煤炭技术, 2010, 29(5):148-149. http://d.old.wanfangdata.com.cn/Periodical/mtjs201005062
Liu Q Z, Wu Q H.Determination of rare earth elements in bauxite by ICP-MS[J]. Coal Technology, 2010, 29(5):148-149. http://d.old.wanfangdata.com.cn/Periodical/mtjs201005062
[30] 张楠, 徐铁民, 吴良英, 等.微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J].岩矿测试, 2018, 37(6):644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
Zhang N, Xu T M, Wu L Y, et al.Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6):644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
[31] 杨小丽, 李小丹, 邹棣华, 等.溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J].冶金分析, 2016, 36(7):56-62. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607009
Yang X L, Li X D, Zou D H, et al.Effect of dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7):56-62. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607009