中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素

周安丽, 武志远, 宁海龙, 王东, 杨丽, 吕新明. 高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素[J]. 岩矿测试, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106
引用本文: 周安丽, 武志远, 宁海龙, 王东, 杨丽, 吕新明. 高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素[J]. 岩矿测试, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106
An-li ZHOU, Zhi-yuan WU, Hai-long NING, Dong WANG, Li YANG, Xin-ming LÜ. Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106
Citation: An-li ZHOU, Zhi-yuan WU, Hai-long NING, Dong WANG, Li YANG, Xin-ming LÜ. Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion[J]. Rock and Mineral Analysis, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106

高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素

  • 基金项目:
    国家重点研发计划项目“国家质量基础的共性技术研究与应用”(2018YFF0215400)
详细信息
    作者简介: 周安丽, 硕士研究生, 从事岩石矿产品分析检测。E-mail:zhouanli1210@163.com
    通讯作者: 吕新明, 高级工程师, 从事岩石矿产品分析检测。E-mail:ciqlxm@163.com
  • 中图分类号: O657.63

Determination of 15 Rare Earth Elements in Hetian Jade by Inductively Coupled Plasma-Mass Spectrometry with High-pressure Closed Digestion

More Information
  • 和田玉的稀土元素丰富,准确测定稀土元素含量对于揭示和田玉成矿物质来源、成矿流体的性质和矿床成因具有重要的意义。本文通过比较硝酸-氢氟酸、四硼酸锂-偏硼酸锂碱熔两种前处理方法,确定了使用硝酸-氢氟酸溶样,再采用电感耦合等离子体质谱法(ICP-MS)测定和田玉中钇镧铈镨钕钐铕钆铽镝钬铒铥镱镥15种稀土元素的含量。为降低基体效应,以103Rh和49In作内标补偿基体效应和校正灵敏度漂移,样品检出限为0.0008~0.0091μg/L,回收率为101.0%~120.0%,精密度(RSD)为0.55%~1.83%(n=11)。本方法的用酸量少,空白值低,应用于不同地区和田玉的分析,其稀土元素的配分模式特征为右倾型轻稀土富集,初步探讨的稀土元素丰度特征可为研究主产区宝玉石的矿床成因提供依据。
  • 加载中
  • 图 1  和田玉稀土元素配分型式

    Figure 1. 

    表 1  ICP-MS仪器工作条件

    Table 1.  Working parameters of the ICP-MS instrument

    工作参数 设定条件
    功率 1100W
    冷却气流量 18.0L/min
    辅助气流量 1.2L/min
    雾化气流量 0.93L/min
    采样锥孔径 1.0mm
    截取锥孔径 0.5mm
    测定方式 跳峰
    扫描次数 30
    停留时间/通道 15ms
    每个质量通道数 3
    总采集时间 20s
    下载: 导出CSV

    表 2  标准曲线及相关指标

    Table 2.  Standard curves and related indexes

    稀土元素 回归方程 相关系数 方法检出限(μg/L) 浓度范围(μg/L) RSD (%) 重复性实验(%)
    89Y y=11273.6x+34.3358 0.9999 0.0008 0~10 0.68 1.32
    139La y=21295.6x+34.3538 0.9999 0.0036 0~10 0.72 1.58
    140Ce y=22152.2x+49.7987 0.9999 0.0078 0~10 0.78 0.61
    141Pr y=41075x+100.858 0.9999 0.0029 0~10 1.76 0.58
    142Nd y=12737.1x+10.0332 0.9999 0.0010 0~10 1.83 0.72
    152Sm y=14301.6x+48.3617 0.9999 0.0015 0~10 0.93 0.84
    153Eu y=1.844771x+0.11593 0.9999 0.0027 0~10 0.72 0.79
    158Gd y=1.471487x+0.19631 0.9998 0.0058 0~10 1.80 2.82
    159Tb y=47088x+305.9453 0.9999 0.0022 0~10 1.72 3.98
    164Dy y=13553.3x+106.294 0.9999 0.0091 0~10 0.62 0.99
    165Ho y=46616.3x+243.263 0.9999 0.0014 0~10 0.61 0.41
    166 Er y=15467.7x+83.3893 0.9999 0.0029 0~10 0.69 2.76
    169Tm y=47700x+250.002 0.9999 0.0009 0~10 0.80 1.08
    174Yb y=16328x+144.771 0.9999 0.0067 0~10 0.79 0.68
    175Lu y=44003x+405.547 0.9998 0.0013 0~10 0.55 1.65
    下载: 导出CSV

    表 3  稳定性和加标回收率试验结果

    Table 3.  Results of the stability and recovery tests

    稀土元素 RSD (%) 加标量(μg/L) 初始值(μg/L) 检测值(μg/L) 回收率(%)
    89Y 2.05 0.010 0.007 0.018 110.0
    139La 1.56 0.2 0.141 0.344 101.5
    140Ce 0.76 0.4 0.380 0.785 101.3
    141Pr 0.74 0.1 0.043 0.153 110.0
    142Nd 0.45 0.1 0.183 0.285 102.0
    152Sm 2.82 0.05 0.047 0.098 102.0
    153Eu 0.63 0.02 0.016 0.038 110.0
    158Gd 0.82 0.1 0.088 0.190 102.0
    159Tb 1.62 0.01 0.008 0.020 120.0
    164Dy 1.36 0.05 0.045 0.098 106.0
    165Ho 0.52 0.1 0.009 0.110 101.0
    166 Er 2.70 0.03 0.028 0.060 106.7
    169Tm 0.61 0.005 0.004 0.010 120.0
    174Yb 1.52 0.03 0.025 0.058 110.0
    175Lu 3.08 0.005 0.003 0.009 120.0
    下载: 导出CSV

    表 4  不同地区和田玉的稀土元素含量测试结果

    Table 4.  Determination of rare earth elements in Hetian jade in different regions

    样品编号 稀土元素测定值(μg/kg)
    Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    RQ-1 0.007 0.141 0.308 0.041 0.180 0.041 0.014 0.081 0.008 0.046 0.009 0.026 0.004 0.022 0.003
    RQ-2 0.006 0.143 0.326 0.042 0.185 0.043 0.014 0.086 0.008 0.049 0.010 0.028 0.004 0.023 0.004
    QM-1 0.015 0.235 0.149 0.043 0.185 0.032 0.009 0.056 0.006 0.032 0.007 0.021 0.002 0.015 0.002
    QM-2 0.195 0.220 0.198 0.044 0.187 0.033 0.009 0.062 0.006 0.034 0.007 0.023 0.003 0.019 0.003
    YT-1 0.157 0.070 0.114 0.018 0.083 0.018 0.003 0.033 0.004 0.022 0.005 0.015 0.002 0.013 0.002
    YT-2 0.010 0.107 0.244 0.033 0.152 0.036 0.006 0.074 0.007 0.045 0.010 0.032 0.004 0.028 0.004
    YC-1 0.001 0.026 0.094 0.007 0.031 0.009 0.004 0.021 0.001 0.009 0.002 0.006 0.001 0.006 0.001
    YC-2 0.137 0.107 0.260 0.028 0.111 0.021 0.005 0.050 0.003 0.020 0.004 0.015 0.002 0.015 0.003
    下载: 导出CSV
  • [1]

    Yu J, Hou Z, Sheta S, et al.Provenance classification of nephrite jades using multivariate LIBS:A comparative study[J]. Analytical Methods, 2018, 3:10.

    [2]

    杨萍, 丘志力, 陈炳辉, 等.现代微区测试技术在确定宝玉石产地来源中的应用及其研究进展[J].宝石和宝石学杂志, 2009, 11(1):1-11. doi: 10.3969/j.issn.1008-214X.2009.01.001

    Yang P, Qiu Z L, Chen B H, et al.Application of modern micro-zone testing technology in determining the origin of gemstone and its research progress[J]. Journal of Gems & Gemology, 2009, 11(1):1-11. doi: 10.3969/j.issn.1008-214X.2009.01.001

    [3]

    鲁力, 魏均启, 王芳, 等.和田玉物质成分及结构类型对比研究[J].资源环境与工程, 2015, 29(1):85-90. doi: 10.3969/j.issn.1671-1211.2015.01.019

    Lu L, Wei J Q, Wang F, et al.Comparative study on material composition and structure type of Hetian jade[J]. Resource Environment and Engineering, 2015, 29(1):85-90. doi: 10.3969/j.issn.1671-1211.2015.01.019

    [4]

    《岩石矿物分析》编委会.岩矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:448-476.

    The editorial committee of < Rock and mineral analysis>. Rock and mineral analysis (The fourth edition, Vol.Ⅲ)[M]. Beijing:Geological Publishing House, 2011:448-476.

    [5]

    周国兴, 刘玺祥, 崔德松.碱熔ICP-MS法测定岩石样品中稀土等28种金属元素[J].质谱学报, 2010, 31(2):120-124. http://d.old.wanfangdata.com.cn/Periodical/zpxb201002011

    Zhou G X, Liu Y X, Cui D S.Determination of 28 metal elements in rare earths and others by rock melting ICP-MS[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(2):120-124. http://d.old.wanfangdata.com.cn/Periodical/zpxb201002011

    [6]

    杨小丽, 崔森, 杨梅, 等.碱熔离子交换-电感耦合等离子体质谱法测定多金属矿中痕量稀土元素[J].冶金分析, 2011, 31(3):11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003

    Yang X L, Cui S, Yang M, et al.Determination of trace rare earth elements in polymetallic ore by alkali fusion ion exchange-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2011, 31(3):11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003

    [7]

    陈贺海, 荣德福, 付冉冉, 等.微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J].岩矿测试, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005 http://www.ykcs.ac.cn/article/id/43948375-b200-4ee0-8402-8d679b888e06

    Chen H H, Rong D F, Fu R R, et al.Determination of 15 rare earth elements in iron ore by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005 http://www.ykcs.ac.cn/article/id/43948375-b200-4ee0-8402-8d679b888e06

    [8]

    陈永欣, 黎香荣, 韦新红, 等.微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J].岩矿测试, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507

    Chen Y X, Li X R, Wei X H, et al.Determination of trace rare earth elements in soil and sediment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507

    [9]

    贾双琳, 赵平, 杨刚, 等.混合酸敞开或高压密闭溶样ICP-MS测定地质样品中稀土元素[J].岩矿测试, 2014, 33(2):186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005 http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5

    Jia S L, Zhao P, Yang G, et al.Determination of rare earth elements in geological samples by mixed acid open or high pressure sealed sample ICP-MS[J]. Rock and Mineral Analysis, 2014, 33(2):186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005 http://www.ykcs.ac.cn/article/id/b48c6aca-5c90-4b00-831e-1a788e3583c5

    [10]

    Liang Q, Jing H, Gregoire D C.Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3):507-513 doi: 10.1016/S0039-9140(99)00318-5

    [11]

    张晨芳, 李墨, 杨颖, 等.密闭压力酸溶-电感耦合等离子体质谱法测定岩浆岩中稀有元素[J].分析科学学报, 2018, 34(6):99-103. http://d.old.wanfangdata.com.cn/Periodical/fxkxxb201806017

    Zhang C F, Li M, Yang Y, et al.Determination of rare elements in magmatic rocks by closed pressure acid-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2018, 34(6):99-103. http://d.old.wanfangdata.com.cn/Periodical/fxkxxb201806017

    [12]

    吴葆存, 于亚辉, 闫红岭, 等.碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J].冶金分析, 2016, 36(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607006

    Wu B C, Yu Y H, Yan H L, et al.Determination of rare earth elements in tungsten ore and molybdenum ore by alkali fusion-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607006

    [13]

    徐静, 李宗安, 李明来, 等.微波消解-电感耦合等离子体原子发射光谱法测定稀土合金渣中主要稀土氧化物[J].冶金分析, 2012, 32(11):46-50. doi: 10.3969/j.issn.1000-7571.2012.11.010

    Xu J, Li Z A, Li M L, et al.Determination of main rare earth oxides in rare earth alloy slag by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012, 32(11):46-50. doi: 10.3969/j.issn.1000-7571.2012.11.010

    [14]

    Bakircioglu D, Topraksever N, Yurtsever S, et al.ICP-OES determination of some trace elements in herbal oils using a three-phase emulsion method and comparison with conventional methods[J]. Atomic Spectroscopy, 2018, 39(1):38-45. doi: 10.46770/AS.2018.01.005

    [15]

    Anjos S L D, Alves J C, Soares S A R, et al.Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP-OES[J]. Talanta, 2018, 178:842. doi: 10.1016/j.talanta.2017.10.010

    [16]

    Zhang N, Li Z, Zheng J, et al.Multielemental analysis of botanical samples by ICP-OES and ICP-MS with focused infrared lightwave ashing for sample preparation[J]. Microchemical Journal, 2017, 134:68-77. doi: 10.1016/j.microc.2017.05.006

    [17]

    Khorge C R, Patwardhan A A.Separation and determin-ation of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J]. Atomic Spectroscopy, 2018, 39(2):75-80. doi: 10.46770/AS.2018.02.004

    [18]

    Arslan Z, Oymak T, White J.Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for deter-mination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Analytica Chimica Acta, 2018, 1008:18-28. doi: 10.1016/j.aca.2018.01.017

    [19]

    Tel-Cayan G, Ullah Z, Ozturk M, et al.Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS[J]. Atomic Spectroscopy, 2018, 39(1):29-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bd25226c89b8fdecc76151f978b676e

    [20]

    Kuznetsova O V, Burmii Z P, Orlova T V, et al.Quan-tification of the diagenesis-designating metals in sediments by ICP-MS:Comparison of different sample preparation methods[J]. Talanta, 2019, 200:468-471. doi: 10.1016/j.talanta.2019.03.001

    [21]

    Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399d63251e1afd27679392d6e00fdd4d

    [22]

    Okina O I, Lyapunov S M, Dubensky A S.Influence of sample treatment after bomb digestion on determination of trace elements in rock samples by ICP-MS[J]. Microchemical Journal, 2018, 140:123-128. doi: 10.1016/j.microc.2018.04.020

    [23]

    Yin X, Wang X, Chen S, et al.Trace element determin-ation in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J]. Atomic Spectroscopy, 2018, 39(4):137-141. doi: 10.46770/AS.2018.04.001

    [24]

    陈永欣, 黎香荣, 韦新红, 等.微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J].岩矿测试, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507

    Chen Y X, Li X R, Wei X H, et al.Determination of trace rare earth elements in soil and sediment by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008 http://www.ykcs.ac.cn/article/id/ykcs_20110507

    [25]

    马莉, 司晗.微波消解样品-电感耦合等离子体质谱法同时测定土壤中重金属元素和稀土元素[J].环境科学导刊, 2016(2):88-91. doi: 10.3969/j.issn.1673-9655.2016.02.019

    Ma L, Si H.Simultaneous determination of heavy metals and rare earth elements in soil by microwave digestion sample-inductively coupled plasma mass spectrometry[J]. Environmental Science Survey, 2016(2):88-91. doi: 10.3969/j.issn.1673-9655.2016.02.019

    [26]

    戴雪峰, 董利明, 蒋宗明.电感耦合等离子体质谱(ICP-MS)法测定地质样品中重稀土元素和钍、铀[J].中国无机分析化学, 2016, 6(4):20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006

    Dai X F, Dong L M, Jiang Z M.Determination of heavy rare earth elements and lanthanum and uranium in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(4):20-25. doi: 10.3969/j.issn.2095-1035.2016.04.006

    [27]

    孙德忠, 安子怡, 许春雪, 等.四种前处理方法对电感耦合等离子体质谱测定植物样品中27种微量元素的影响[J].岩矿测试, 2012, 31(6):961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008 http://www.ykcs.ac.cn/article/id/ykcs_20120609

    Sun D Z, An Z Y, Xu C X, et al.Comparison of different digestion procedures for elemental determination in plant samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6):961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008 http://www.ykcs.ac.cn/article/id/ykcs_20120609

    [28]

    赵楠楠, 黄慧萍, 李艳玲, 等.电感耦合等离子体质谱法测定金红石单矿物中痕量稀土元素[J].理化检验(化学分册), 2012, 48(7):781-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204169845

    Zhao N N, Huang H P, Li Y L, et al.Determination of trace rare earth elements in rutile single minerals by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2012, 48(7):781-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204169845

    [29]

    刘勤志, 吴堑虹.ICP-MS测定铝土矿中的稀土元素[J].煤炭技术, 2010, 29(5):148-149. http://d.old.wanfangdata.com.cn/Periodical/mtjs201005062

    Liu Q Z, Wu Q H.Determination of rare earth elements in bauxite by ICP-MS[J]. Coal Technology, 2010, 29(5):148-149. http://d.old.wanfangdata.com.cn/Periodical/mtjs201005062

    [30]

    张楠, 徐铁民, 吴良英, 等.微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J].岩矿测试, 2018, 37(6):644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023

    Zhang N, Xu T M, Wu L Y, et al.Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6):644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023

    [31]

    杨小丽, 李小丹, 邹棣华, 等.溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J].冶金分析, 2016, 36(7):56-62. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607009

    Yang X L, Li X D, Zou D H, et al.Effect of dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7):56-62. http://d.old.wanfangdata.com.cn/Periodical/yjfx201607009

  • 加载中

(1)

(4)

计量
  • 文章访问数:  1296
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2019-07-17
修回日期:  2019-09-04
录用日期:  2019-10-21

目录